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Finite temperature ab initio molecular dynamics (AIMD), in which forces are obtained from “on-the-fly”
electronic structure calculations, is a widely used technique for studying structural and dynamical properties
of chemically active systems. Recently, we introduced an AIMD scheme based on discrete variable
representation (DVR) basis sets, which was shown to have improved convergence properties over the
conventional plane wave (PW) basis set [Liu,Y.; et al.Phys. ReV. B 2003, 68, 125110]. In the present work,
the numerical algorithms for the DVR based AIMD scheme (DVR/AIMD) are provided in detail, and the
latest developments of the approach are presented. The accuracy and stability of the current implementation
of the DVR/AIMD scheme are tested by performing a simulation of liquid water at ambient conditions. The
structural information obtained from the present work is in good agreement with the result of recent AIMD
simulations with a PW basis set (PW/AIMD). Advantages of using the DVR/AIMD scheme over the PW/
AIMD method are discussed. In particular, it is shown that a DVR/AIMD simulation of liquid water in the
complete basis set limit is possible with a relatively small number of grid points.

I. Introduction

Over the last two decades, substantial theoretical and
algorithmic advances in the area of ab initio molecular dynamics
(AIMD) simulations have been made.1-4 These methods, which
employ a density functional theory (DFT) representation of the
electronic structure, are now routinely used to interpret experi-
mental data and predict the properties of a wide variety of
materials. A widely used AIMD technique is the Car-Parrinello
ab initio molecular dynamics (CPAIMD) based on the extended
Lagrangian approach and, in most implementations, a plane-
wave (PW) expansion of the electronic orbitals.5 The efficiency
of CPAIMD comes from the fictitious dynamics of the orbitals
that allow “on the fly” generation of the interatomic forces.
Although the PW basis is conceptually simple and widely used
for periodic systems, it has one critical disadvantage: PW based
algorithms scale asO(N2M), whereN is the number of occupied
electronic states andM is the number of basis functions. This
bottleneck currently limits the application of CPAIMD up to a
few hundred atoms. In addition, PW based methods rely heavily
on the use of fast Fourier transform (FFT), and this reliance is
not optimal for massively parallel computers due to the need
for global (all-to-all type) communications among processors.

To overcome these difficulties, many alternatives have been
introduced, including novel parallelization schemes,68 Gaussian
basis sets,6,7 hybrid Gaussian/PW basis sets8 and real-space
approaches.9-13 Some of these alternative methods have attracted
increasing interest in recent years for the development of linear
scaling (O(N)) electronic structure calculations.14-18 Real-space
methods, such as finite difference19 and finite element,20 do not

have associated basis functions because the electronic orbitals
are discretized on a 3-dimensional (3D) grid. However, an
advantage of real-space methods is that they are inherently local
and can be efficiently implemented on massively parallel
computers. The Hamiltonian matrix is very sparse, and efficient
matrix-vector multiplication algorithms can be used to obtain
the Kohn-Sham orbitals. In addition, when real-space methods
are combined with an orbital localization scheme, the result is
a method that can be made to scale linearly with respect to the
system size.11 In fact, a large scale (∼1000 atoms) electronic
structure calculation was performed with a real-space method
and showed thatO(N) scaling can be achieved in practice.21

The numerical methods to solve the Kohn-Sham equation
on a real-space grid have been pioneered by Beck,12 Bernholc,10

and Chelikowsy.19 In the usual implementation of real-space
methods, gradient and Laplacian operators are discretized on
the grid and a high order finite difference scheme is used to
approximate the kinetic energy operator. Potential energies,
which involve the overlap integrals between the electronic
orbitals and the atomic pseudopotentials, are evaluated directly
on the grid by summing the values of integrand over the grid
points. However, the Hartree potential cannot be computed
directly on the grid because it leads to a prohibitively expensive
double summation over the grid points. Instead, the Hartree
potential is obtained by iteratively solving the Poisson equation
with the proper boundary condition. Because the Kohn-Sham
equation is a nonlinear equation that requires iterative updates
of solutions, each update step involves an iterative solution of
the Poisson equation. Various types of multigrid methods22,23

have been developed to accelerate the convergence of the
iterative solutions of both the Kohn-Sham equation and the† Part of the special issue “John C. Light Festschrift”.
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Poisson equation. For more technical details of multigrid
methods and their applications to the solutions of the Kohn-
Sham equation as well as linear scaling electronic structure
calculations, readers are referred to the review by Beck.12

AlthoughO(N) scaling electronic structure calculations have
been actively pursued, only a limited number of AIMD studies
with real-space methods have been reported.10,24-26 In fact, to
the best of our knowledge, the most complicatedcondensed
phasesystem that has been successfully simulated so far with
a real-space method is a liquid silicon system.24 No real-space
method has yet been applied to study aqueous systems.
Furthermore, most real-space AIMD methods are based on the
so-called Born-Oppenheimer ab initio molecular dynamics
(BOAIMD) scheme, where the electronic wavefunctions are
explicitly quenched to the ground state at each AIMD step.
Although a larger time step can be used in BOAIMD simulations
than in CPAIMD simulations, it is a well-known fact that the
BOAIMD scheme requires a very strict convergence criterion
for minimization of the Kohn-Sham functional at each time
step to avoid substantial drifts in the conserved energy. The
question of the relative efficiency of CPAIMD vs BOAIMD is
still being debated in the literature.3,27 To develop an efficient
linear scaling AIMD method, we choose to develop an accurate
and stable scheme based on real-space methods within the
CPAIMD framework. However, due to the extreme sensitivity
of CPAIMD simulations to the continuity and accuracy of the
force evaluations, difficulties may arise when typical grid-based
methods are applied to the CPAIMD scheme. Even a small
random error can jeopardize the long-term stability of CPAIMD
simulations.

Recently, we developed a discrete variable representation
(DVR) approach28,29for CPAIMD simulations as an alternative
real-space method for the implementation of AIMD calculations
on massively parallel computers.30 DVRs have been extensively
used in the nuclear quantum dynamics community for decades
but it is a new approach for electronic structure calculations
and AIMD simulations. Unlike conventional real-space methods,
a DVR is a basis setapproach, and the kinetic energy is
evaluatedexactlyfor the specified basis set. DVR basis functions
are localized in space but definedeVerywhere, not just on grid
points. Consequently, they do not employ explicit spatial cutoffs.
As in a plane-wave basis set, the orbitals are represented by a
set of expansion coefficients. However, in a DVR, a one-to-
one correspondence exists between coefficients and grid points.
Moreover, the independence of the basis functions on the atomic
positions makes the calculation of atomic forces easier to
evaluate than in a basis of atom-centered basis functions such
as Gaussians. In our previous publication,30 we demonstrated
the advantage of DVR basis sets over PW basis sets in terms
of the energy cutoff required to converge the total energy of
solid silicon and a single water molecule. We also showed the
stability of CPAIMD simulations with DVRs by performing a
short (2 ps) simulation of solid silicon system.

In the present work, we describe the newest developments
of the original approach and apply the current implementation
of the DVR based CPAIMD scheme (DVR/CPAIMD) to
simulate a liquid water system that consists of 32 water
molecules in a periodic box. To obtain accurate results for the
liquid water system, a simulation of at least 20 ps or more is
necessary. In addition, the highly repulsive oxygen pseudopo-
tential makes it difficult to perform an accurate and efficient
CPAIMD simulation of liquid water with any real-space method.
Therefore, the liquid water system serves as an important
benchmark to test rigorously the accuracy and stability of the

DVR/CPAIMD scheme. Here, we present preliminary results
of our simulation of liquid water and focus on the accuracy
and stability of the DVR/CPAIMD scheme with the BLYP31,32

exchange-correlation functional. With the grid spacing used in
this work, the total energy of a 32 water system is converged
to within 10-3 hartree, whereas the typical 70 Ry energy cutoff
in PW calculations leads to a total energy more than 1 hartree
from the converged value. Therefore, a DVR basis allows us to
perform a CPAIMD simulation of liquid water at ambient
conditionsat or near the complete basis set limit. Given the
fact that recent AIMD studies of water,33-41 all based on PW
or hybrid Gaussian/PW basis sets, showed a wide range of
structural parameters, depending on the basis set, equilibration
method, exchange-correlation functional, and type of ensemble,
the results obtained from DVR/CPAIMD simulations that
accurately describe the electronic structure of water can shed
light on the accuracy of CPAIMD simulations for a given
density functional.

The organization of this paper is as follows. In section II,
the basic properties of DVR bases are briefly described.
Following this, a succinct description of the current implementa-
tion of the DVR/CPAIMD scheme is presented in section III
with particular attention given to the nonlocal part of the
pseudopotential calculation. In section IV, the accuracy and
improved efficiency of total energy calculations are discussed
as well as the preconditioner used in the energy minimization
procedure. This will be followed by preliminary results of a
liquid water simulation under constant volume and temperature
conditions. Conclusions and future work are given in section
V.

II. Discrete Variable Representation (DVR)

The definition and properties of DVRs are well documented
in the literature.28,29 In this section, we only provide the basic
concepts that are relevant to our application of the DVR method
to CPAIMD simulations. There are several equivalent ways to
define a DVR, for example, using classical orthogonal poly-
nomials (Chebyshev, Hermite, ...) and an associated Gaussian
quadrature. However, all that is required is the specification of
a set of functions{Cl(x)} that satisfy an orthogonality relation
with respect to an appropriate weight functionω(x):

If we define our basis functions (often called a finite basis

representation, (FBR)) asφl(x) ) xω(x)Cl(x), the overlap
integrals can be evaluatedexactly with N-point Gaussian
quadrature for 0e l, m e N - 1:

where{xR} is a set of Gaussian quadrature points and{ωR} are
the corresponding quadrature weights. BecauseN-point Gaussian
quadrature is exact for integrands up to order 2N - 1, the

∫a

b
ω(x) Cl

/(x) Cm(x) dx ) δlm (1)

∫a

b
φl
/(x) φm(x) dx ) ∑

R)1

N ωR

ω(xR)
φl
/(xR) φm(xR)

) ∑
R)1

N

ωRCl
/(xR) Cm(xR)

) δlm (2)
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coordinate matrix for basis functions{φl(x)} can be evaluated
exactly with the same quadrature:

From eq 3, the elements of the “transformation matrix” is
defined as

and the coordinate matrix in a DVR is formally defined through
the transformation matrix as

whereXDVR is a diagonal matrix whose elements are the “DVR
points”, {xR}. Note that the matrixT is unitary due to eq 2.
The transformation matrix defined in eq 4 leads to the formal
definition of the DVR basis functions,{uR(x)}, corresponding
to the DVR points{xR}:

As is clear from the definition, eq 6, DVR functions are
continuous and defined everywhere in space. One of the most
important properties of a DVR function is that the values of
uR(x) are zero at all DVR points exceptxR: i.e.

To obtain the second equality in eq 7, the fact that theT matrix
is unitary was used. With the above definition of the DVR
functions, the overlap integrals for the DVR functions are also
equal to the Kronecker delta (cf. eq 2)

The choice of FBR functions is usually determined by the
boundary conditions of the problem. In many condensed-phase
applications, the system is confined in a three-dimensional
periodic box. In these cases, the DVR functions can be
constructed from plane-wave-like functions (or Chebyshev
polynomials), and the one-dimensional (1D) FBR functions
{φl(x)} can be defined in [-L/2, L/2] as

for l ) 1, 2, ..., 2N + 1, whereL is the box length and the
number of basis functions is 2N + 1. For periodic functions,
an equally spaced grid ensures the accuracy of the Gaussian
quadrature (or Gauss-Chebyshev quadrature of the first kind),
and the DVR points are given by

and the elements of transformation matrix become

Hence, for a one-dimensional periodic system, a DVR function
can be defined explicitly as

Note thatω(x) ) 1 andωR ) L/(2N + 1) for an equally spaced
grid. Finally, for the system with three-dimensional periodic
boundary conditions, a direct product of one-dimensional DVR
functions for each coordinate,

can be used to define a three-dimensional DVR for a simple
cubic box. Extensions to noncubic boxes is straightforward.

III. Car -Parrinello Molecular Dynamics with DVR

The Car-Parrinello AIMD scheme is based on an extended
system Lagrangian, which describes the dynamics ofN nuclei
and introduces a fictitious adiabatic dynamics ofNs orbitals as
a means of propagating the optimized electronic structure from
one nuclear configuration to the next without explicit minimiza-
tion. The Lagrangian is given by

whereµ is a time-scale parameter associated with the fictitious
orbital dynamics,MI andRI are the mass and the position of
atom I and{Λij} is a set of Lagrange multipliers that impose
the orthonormality of the orbitals. The atoms and orbitals are
propagated simultaneously via an adiabatic dynamics scheme
in which the orbitals are kept “cold” compared to the nuclei,
such that the electronic orbitals closely follow the instantaneous
Born-Oppenheimer ground-state surface. The electronic energy,
E, which serves as the potential energy for the atoms in the
system, is usually computed by using density functional theory
(DFT). In the Kohn-Sham formulation of DFT, the energy
functional is given by

where n(r ) ) ∑i fi|ψi(r )|2 is the electron density,fi is the
occupation number of theith orbital,Ts is the kinetic energy of
the Kohn-Sham noninteracting electron system,EH is the
Hartree energy,Exc is the exchange-correlation energy andEN

is the electrostatic interaction between the atoms.

X lm ) ∫a

b
φl
/(x)xφm(x) dx

) ∑
R)1

N ωR

ω(xR)
φl
/(xR)xRφm(xR) (3)

TRl ) x ωR

ω(xR)
φl(xR) (4)

X ) T†XDVRT (5)

uR(x) ) ∑
l)1

N

T lR
†
φl(x) (6)

uR(xâ) ) ∑
l)1

N

T lR
†
φl(xâ)

) xω(xâ)

ωâ
δRâ (7)

∫a

b
uR(x) uâ(x) dx ) ∑

γ)1

N ωγ

ω(xγ)
uR(xγ) uâ(xγ)

) ∑
γ)1

N ωγ

ω(xγ)xω(xγ)

ωγ

δRγxω(xγ)

ωγ

δâγ

) δRâ (8)

φl(x) ) 1

xL
e2πiklx/L kl ) -N, -N + 1, ...,N (9)

xR ) L
2N + 1

(R - N - 1) R ) 1, 2, ..., 2N + 1 (10)

TRl ) 1

x2N + 1
e2πiklxR/L (11)

uR(x) ) ∑
l)1

2N+1 x 1

L(2N + 1)
cos[2πkl(x - xR)

L ] (12)

ΦRâγ(r ) ) uR(x) uâ(y) uγ(z) (13)

L ) µ∑
i)1

Ns

〈ψ̇i|ψ̇i〉 +
1

2
∑
I)1

N

MIR4 I
2 - E[{ψi},{RI}] +

∑
i,j

Λij(〈ψi|ψj〉 - δij) (14)

E[{ψi},{RI}] ) Ts[{ψi}] + EH[n] + Exc[n] + EN({RI}) +
Eext[n;{RI}] (15)
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In the present DVR based DFT scheme, the Kohn-Sham
orbitals are expanded in terms of direct products of one-
dimensional DVR functions, eq 13, such that

where{CRâγ
i } is a set of expansion coefficients for the statei.

A DVR expansion of the orbitals leads to the density expression,

and the density at a DVR point is simply given by

It should be noted that, unlike conventional real-space
methods, the electronic orbitals and density expressed in terms
of DVR functions are defined everywhere in space and each
term in the energy functional has a well-defined expression. In
the following, we describe the energy and force expressions
for each term that appears in the energy functional of eq 15
within the DVR formalism as well as the current implementation
of the method in the PINY_MD code.42 For simplicity, we
assume that the number of grid points along each coordinate is
the same, but the extension to a noncubic grid is straightforward.
For a cubic grid, only the grid spacing,h, controls the accuracy
of the total energy calculation. Note that a grid spacingh is
equivalent to an energy cutoffπ2/h2 Ry in plane-wave calcula-
tions. If a single grid is used to represent both the orbitals and
the density, as done here, thenh is required to be small enough
to describe the spatial fluctuations of the density. In this case,
π2/h2 would correspond to the energy cutoff of a density
expansion in a PW basis. However, one could also imagine using
a grid spacing of 2h to describe the orbitals as a time-saving
measure. In this case, the energy cutoff of the orbital expansion
would be equivalent toπ2/4h2, which leads to the expected
relation between the orbital and density cutoffs in a PW basis,
namely,Ecut

(dens)) 4Ecut
(orb).

(a) Kinetic Energy. The kinetic energy, first term in eq 15,
can be evaluated exactly for a given DVR basis set and the
analytical expressions of the kinetic energy matrix elements for
our one-dimensional DVR functions, eq 12, are available.43 The
full kinetic energy matrix,KRâγ

R′â′γ′, is then constructed by a
direct product of three one-dimensional kinetic energy matrices
for each coordinate, and the kinetic energy is obtained by

The force on the orbital coefficientCRâγ
i is therefore given by

For example, for the FBR of eq 9, the matrixKRâγ
R′â′γ′ is given by

where

whereNg ) 2N + 1 is the number of grid points andL is the
length of the box in a given direction. Efficient implementation
of the kinetic energy in a DVR basis requires transposition of
the orbital coefficient matrix so that, for each spatial direction,
summations are performed over an index that is contiguous in
memory. This operation requires an all-to-all communication
step. We note that although it is not possible to truncate the
primitive kinetic energy matrix,tnn′, improved efficiency in the
calculation of the total kinetic energy is expected when localized
orbitals are used.

(b) Hartree Energy. In the DVR approach, the Hartree
energy and coefficient forces are computed in reciprocal space
because the Hartree energy involves not only an expensive
double summation over the grid points but also a divergent
Coulomb term, 1/r. In reciprocal space, the Hartree energy
simply becomes

whereng is the Fourier component of the density corresponding
to the reciprocal space vectorg, which is obtained by an FFT
of the density in real-space, eq 19.V is the volume of the unit
cell. The functionφ̃(screen)(g) is a “screening” function, derived
in refs 44-46, that allows nonperiodic systems to be treated
within a reciprocal-space approach.

(c) Exchange-Correlation Energy.It is often necessary to
employ exchange-correlation (XC) functionals beyond the local
density approximation. When the generalized gradient ap-
proximation (GGA) for the XC functional and the real-space
method of White and Bird are used,47 Exc is given by a
summation over the grid points as

wherefxc is the exchange-correlation energy per particle. The
gradient of the electron density at a DVR point,rRâγ, can be
derived analytically as

with analogous expressions for they andz components of the
gradient. Because a DVR function,uR(x), is continuous and
analytically defined as eq 6, its derivative,u′R(x), can be
computed at all DVR points along a given spatial direction and
stored at the beginning of each simulation. To compute the
forces on the DVR coefficients, the derivative of the density
gradient with respect to the DVR coefficients must be computed.

ψi(r ) ) ∑
Râγ

CRâγ
i ΦRâγ(r ) (16)

n(r ) ) ∑
i

fi|∑
Râγ

CRâγ
i ΦRâγ(r )|2 (17)

n(rR′′â′′γ′′) )

∑
i

fi∑
Râγ

CRâγ
i ΦRâγ(rR′′â′′γ′′) ∑

R′â′γ′
CR′â′γ′

i ΦR′â′γ′(rR′′â′′γ′′) (18)

) ∑
i

fi|CR′′â′′γ′′
i |2 (19)

-
1

2
∑

i

fi〈ψi|∇2|ψi〉 ) ∑
i

fi∑
RR′

∑
ââ′

∑
γγ′

CRâγ
i KRâγ

R′â′γ′ CR′â′γ′
i (20)

FRâγ
i ) -2fi∑

R′
∑
â′

∑
γ′

KRâγ
R′â′γ′ CR′â′γ′

i (21)

KRâγ
R′â′γ′ ) tRR′δââ′δγγ′ + tââ′δRR′δγγ′ + tγγ′δRR′δââ′ (22)

tnn′ ) -(2π
L )2N

6
(N + 1)δnn′ -

(2π
L )2

(-1)n-n′ cos[π(n - n′)
Ng

]
4 sin2[π(n - n′)

Ng
]

(1 - δnn′) (23)

EH )
1

V
∑
g*0[ 4π

|g|2
+ φ̃

(screen)(g)]|ng|2 +
1

V
φ̃

(screen)(0)|n0,0,0|2

(24)

Exc )
V

N
∑
Râγ

n(rRâγ) fxc(n(rRâγ),|∇n(rRâγ)|) (25)

∇xn(rRâγ) ) 2∑
i

fi[ CRâγ
i

ωâωγxωR

∑
R′

CR′âγ
i u′R′(xR)] (26)
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For example, the derivative of thex-component of density
gradient can be obtained from eq 26 as

As with the kinetic energy, the summations can be efficiently
computed by transposing the orbital coefficient array so that
the summation is always performed over points that are
contiguous in memory.

(d) Local and Nonlocal Energies.In the AIMD scheme,
core electrons are usually replaced by atomic pseudopotentials
(V̂pseud), and the external energy,Eext, in eq 15 is computed
according toEext ) ∑i fi〈ψi|V̂pseud|ψi〉. Atomic pseudopotentials
utilize a different radial potential for each angular momentum
channel (l, m) of each atom type and therefore they are generally
nonlocal:

whereJ runs over the number of atom types,I(J) denotes an
index I that runs over the atoms of each typeJ, and|lm〉〈lm| is
a projection operator. The summation overl is truncated atlh -
1 and, as a result, the pseudopotential operator is decomposed
of into two parts, specifically, local and nonlocal terms given,
respectively, by

where∆VJl(r) ) VJl(r) - VJlh(r) and Î is the identity operator.
Like the Hartree term, the local part of the pseudopotential is
computed in reciprocal space because the local potential includes
a long-range term. In our previous work,30 only the long-range
part of the local potential was computed in reciprocal space
and the short-range part was computed in real-space. Here, the
entire local potential is computed in reciprocal space. Therefore,
the local potential energy is computed by

whereṼloc,J(g) is the FFT of the local potentialVloc,J(r) ≡ VJlh(r)
and RI(J) is the location of atomI of type J. Here, again, the
presence of the screening function allows for treatment of
nonperiodic systems within the reciprocal-space framework.
Because both the Hartree energy and local potential energy
involve only the electron density (not the orbitals), we only need
two FFTs to compute both terms. One FFT is needed to obtain
ng and the other is needed to transform part of the potential
back to real space for the calculation of the orbital forces. The
contributions to the atomic forces from the local potential can

be computed in a straightforward manner using the reciprocal
space energy expression.

The nonlocal part is further approximated and the fully
separable form of Kleinman and Bylander48 is used such that

whereFJlm(r ) is an angular momentum and atom type dependent
function andNJl is a weight factor. The functionFJlm(r ) is
proportional to the radial part of the pseudopotential∆VJl(r)
multiplied by a spherical harmonicYlm(θ,φ). The quantityZiI(J)Jlm

is defined by

In our previous work,30 we evaluated the integral in eq 32 by a
direct summation over the DVR grid points according to

To compute the forces on the atoms, the derivative ofZiI (J)Jlm

with respect to the atomic positions is needed:

where (θ(r-RI(J)), φ(r-RI(J))) are the polar angles associated with
the vectorrRâγ - RI(J). With the real-space expression ofZiI(J)Jlm,
the force on a DVR coefficient can be computed in a
straightforward manner as

However, the real-space evaluation of eq 32, whose integrand
consists of an atomic position-dependent functionFJlm(r - RI(J))
and a field ψi(r ), is subject to an intrinsic problem called
aliasing. If FJlm(r ) contains Fourier components of frequency
higher than the maximum frequency a given grid can support,
the summation in eq 33 becomes dependent on the relative
positions of the atoms with respect to the grid points. Therefore,
the total energy is not translationally invariant. Note that the
local potential energy (eq 30) contains a similar integrand, and

∂∇xn(rR′â′γ′)

∂CRâγ
i

) 2fi[ 1

ωâωγxωR

∑
R′′

CR′′âγ
i u′R′′(xR)δRR′δââ′δγγ′ +

CR′âγ
i

ωâωγxωR′

u′R(xR′)] (27)

V̂pseud) ∑
J
∑
I(J)

∑
l)0

∞

∑
m)-l

m)l

VJl(|r - RI(J)|)|lm〉〈lm| (28)

V̂pseud≈ ∑
J
∑
I(J)

VJlh(|r - RI(J)|)Î

+ ∑
J
∑
I(J)

∑
l)0

lh-1

∑
m)-l

l

∆VJl(|r - RI(J)|)|lm〉〈lm|

≡ V̂pseud,loc+ V̂pseud,NL (29)

Eloc ) ∑
J
∑
I(J)
∫n(r ) Vloc,J(|r-RI(J)|) dr

)
1

V
∑

J
∑
I(J)

∑
g

ng
/e-ig‚RI(J)[Ṽloc,J(g) - ZJφ̃

(screen)(g)]

(30)

ENL ) ∑
i

fi∑
J
∑
I(J)
∫dr dr ′ ψi

/(r ′) ψi(r )

× [∑
l)0

lh-1

∑
m)-l

m)1

NJlFJlm
/ (r-RI(J)) FJlm(r ′-RI(J))]

) ∑
i

fi ∑
J
∑
I(J)

∑
lm

NJlZiI (J)Jlm
/ ZiI (J)Jlm (31)

ZiI (J)Jlm ) ∫dr FJlm(r-RI(J)) ψi(r ) (32)

ZiI (J)Jlm ) ∫∑
Râγ

CRâγ
i ΦRâγ(r ) FJlm(r-RI(J)) dr

) ∑
R′â′γ′

∑
Râγ

CRâγ
i ΦRâγ(rR′â′γ′) FJlm(rR′â′γ′-RI(J))ωRωâωγ

) ∑
Râγ

xωRωâωγCRâγ
i FJlm(rRâγ-RI(J)) (33)

∂ZiI (J)Jlm

∂RI(J)

) ∑
Râγ

xωRωâωγCRâγ
i

∂FJlm(rRâγ-RI(J))

∂RI(J)

) - ∑
Râγ

xωRωâωγCRâγ
i {[∂∆VJl(r)

∂r ]
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it also suffers from aliasing. However, the problem is much
more serious for the nonlocal potential because it is short-ranged
whereas the local potential has mostly long-range contributions.

The aliasing effect can be reduced by grid refinement
techniques,49,50but such techniques increase the cost of nonlocal
energy and force calculations substantially in the DVR frame-
work. Instead, we take a more straightforward approach and
remove the high-frequency components of the nonlocal potential
by Fourier filtering at the beginning of the simulation.10,51Thus,
the nonlocal pseudopotential functions∆VJl(r) are first trans-
formed to reciprocal space by using a spherical Bessel transform:

where jl(r) is a spherical Bessel function of orderl. Nonlocal
pseudopotentials in reciprocal space are then multiplied by a
switching function to damp out the high-frequency components.
In the present work, a switching function of the form10

was used, wheregcut ) Rπ/h. For the nonlocal pseudopotential
of oxygen, we usedR ) 0.85 andâ ) 20. The modified
pseudopotential functions are then transformed back to real-
space by an inverse spherical bessel transform:

Finally, the modified nonlocal pseudopotential functions
∆ṼJl(r) are used in eq 33 and eq 35, to compute the nonlocal
potential energy and force.

To demonstrate the effect of Fourier filtering, we monitored
the electronic energy of single oxygen atom as its relative
position with respect to grid points changes. Specifically, an
oxygen atom is placed in a cubic periodic box of 8 Å and the
electronic energies are computed as the atom is moved
diagonally from one grid point to the next. In Figure 1a, we
show the variation of the total electronic energy with and without
the Fourier filtering. As shown in the figure, Fourier filtering
reduces the grid dependence of energy more than an order of
magnitude. For comparison, we also include a similar plot in
Figure 1b obtained from the calculations with plane wave basis
set of Ecut

(orb) ) 35 Ry energy cutoff. This cutoff leads to the
density FFT grid that has the same grid spacing as the DVR
grid used in Figure 1a. The grid dependence of energy is
negligible in plane wave calculations, and it is on the order of
0.0001 hartree forEcut

(orb) ) 70 Ry, a typical energy cutoff used
in the simulation of liquid water.

As an illustration of the energy convergence of the DVR basis
set approach in conjuction with the Fourier filtering, the energy
of a water dimer in a cubic periodic box of length 15 bohr was
computed as a function of the DVR grid spacing. The results
are reported in Table 1. The calculations were carried out with
the BLYP exchange-correlation functional31,32and the Troullier
and Martin (TM) type52 atomic pseudopotentials. The details
of the algorithm to minimize the energy functional is described
are section IV.A. From the table, it can be seen that the energy
is converged to within 1 kcal/mol of the fully converged value
with 613 DVR grid points whereasEcut

(orb) ) 200 Ry is needed
for PW calculations to achieve the same level of accuracy.

In the CPAIMD scheme, the nonlocal part of the pseudo-
potential calculation is a major bottleneck along with the
orthogonalization step because both of these steps scale as
O(N3). This is clearly seen from eq 31 and eq 33 where each
summation overi, I(J) and the grid points scales asO(N).
Although this poor scaling is not a serious issue for small
systems, it quickly becomes dominant in CPAIMD simulations
of larger systems. In real-space approaches, the scaling of the
nonlocal part of the pseudopotential calculation can easily be
reduced toO(N2) by using the fact that nonlocal pseudopotential
functions ∆VJl(r) are very short ranged. In other words, the

∆ṼJl(g) ) x2
π∫0

∞
∆VJl(r) j l(gr)r2 dr (36)

f (g) ) e-â(g/gcut-1)2 g > gcut (37)

f (g) ) 1 g e gcut (38)

∆ṼJl(r) ) x2
π∫0

∞
∆ṼJl(g) f(g) j l(gr)g2 dg (39)

Figure 1. Variation of the electronic energy of single oxygen atom
placed in a cubic periodic box of 8 Å as its position changes with
respect to grid points. The unit ofx-axis is the grid spacing,h. In (a),
the results obtained for DVR basis (h ) 0.25 au) are shown with (closed
circles) and without (open circles) the Fourier filtering. The results
obtained for plane wave basis withEcut

(orb) ) 35 Ry energy cutoff are
shown in (b). This energy cutoff leads to the density FFT grid with the
same spacing as used in the DVR calculation.

TABLE 1: Convergence of the Electronic Energy for a
Water Dimer in a Cubic Periodic Box of 15 Bohr for the
DVR and PW Basis Setsa

grid size
(Ecut

(orb)) E(DVR) |∆E| E(PW) Nc(Ndens) |∆E|
373 (10) -37.2903 40.7254 -33.1202 896 (7182) 2657.5027
493 (25) -37.3576 1.5060 -35.5374 3562 (28139) 1140.6868
613 (35) -37.3551 0.06275-36.3767 5877 (47171) 614.0180
733 (50) -37.3551 0.06275-37.0060 10003 (80618) 219.1263
813 (80) -37.3552 0 -37.3205 19660 (156211) 21.7745

1203 (150) -37.3533 52472 (418909) 1.1923
1443 (200) -37.3546 80618 (644880) 0.3765
1603 (300) -37.3552 146916 (1170999) 0

a The PW cutoff (Ecut
(orb)) given in parenthesis leads to the density

FFT grid with the specified number of grid points. The energies are
given in hartree and the energy difference (|∆E|) measures the
difference between the energy at each grid size and the converged
energy in kcal/mol. Also given are the spherically truncated number
of orbital (Nc) and density (Ndens) coefficients in PW calculations. Each
atom that comprises the water dimer has the following Cartesian
coordinates in Å: (2.6068, 3.9843, 4.1112), (5.5148, 4.0192, 3.8806)
for oxygens and (2.2649, 3.2927, 3.5370), (2.2747, 4.8095, 3.7456),
(5.9271, 3.8794, 4.7360), (4.5608, 3.9907, 4.0466) for hydrogens.
Throughout the calculations, the atomic pseudopotentials of Troullier
and Martin (TM) type52 are employed in the Kleinman-Bylander48 form
for the nonlocal part of energy calculation with nonlocalScomponents
on the oxygens only.
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summation over the grid points in eq 33 can be restricted to
the points inside of a sphere around each atom. Because the
truncation radius (rcut) does not depend on the system size, the
cost of computing allZiI (J)Jlm is reduced toO(N2). However,
when Fourier filtering is used, the transformed potential,
∆ṼJlh(r), does not strictly go to zero beyondr > rcut and has a
long oscillating tail. Although the magnitude of the tail is small,
an arbitrary truncation causes a discontinuity in the forces, which
may be problematic for long time simulations. Because the
oscillating tail is not part of the original pseudopotential, a
switching function can be applied to∆ṼJl(r) to damp out the
long range oscillation and make the potential rigorously go to
zero. For a switching function in real-space, we used the form
described in ref 53 for test calculations. For systems containing
oxygen, the switching function might be taken to act, for
example, betweenr ) rcut - 0.5 au andr ) rcut. For the oxygen
pseudopotential with theR andâ parameters specified above,
a grid spacing ofh ) 0.25 au combined with a truncation radius
rcut ) 3.5 au leads to an agreement in the total energy of 32
water system within 0.002 hartree (or 6.3× 10-5 hartree per
molecule) compared to the energy computed without the
truncation. The reduction in computational overhead due to
spherical truncation is significant for a 64-water system.
Specifically, we achieved a factor of 4 saving for the nonlocal
part of the calculation even with a relatively sparse grid spacing
(h ) 0.35).

Although Fourier filtering is straightforward to implement
and does not increase the computational cost, the ad hoc
parameters,R andâ, must be chosen carefully. As an alternative,
an interpolation scheme can be used to evaluateFJlm(r - RI(J))
on the real-space grid. Recently, we introduced such a real-
space scheme based on the Euler exponential spline interpolation
for the nonlocal pseudopotential calculations in PW based
CPAIMD simulations.54 The method scales asO(N2) and can
be adapted for the DVR based method as well. In the appendix,
we briefly describe this approach as an alternative to overcome
the aliasing effect.

IV. Results

A. Total Energy Calculation. The total electronic energy
of the system for a given configuration is computed by
minimizing the energy functional using the conjugate gradient
(CG) technique.55 Previously, we applied a simple CG scheme
without any preconditioning30 to compute the ground state
energies of bulk silicon and single water molecule. For small
silicon systems, the convergence was reasonably fast for the
purpose of investigating the efficiency of the DVR basis set.
However, for larger systems, such as liquid water, the rate of
convergence in the energy minimization is unacceptably slow
if no preconditioner is used. In the CG method, the steepest
descent vector that points to the direction of energy minimum
is biased by the high-frequency components of wave functions.
The role of the preconditioner is to offset these components so
that the steepest decent direction represents the errors in the
expansion coefficients more accurately. Multigrid approaches10,12

normally used in real-space methods are based on similar
arguments. In multigrid methods, multiple levels of grid density
are used iteratively and the frequency components of the error
that are best represented by the grid density of each level are
removed.

In a plane wave basis, the Kohn-Sham Hamiltonian is
diagonally dominant for the highg-vector components of the
basis set, and therefore, a simple diagonal preconditioning matrix
is quite efficient. The Kohn-Sham Hamiltonian in DVR basis,

however, is not diagonally dominant. Nevertheless, the behavior
of the KS Hamiltonian in reciprocal space can be used to
develop a preconditioner for the DVR basis. In the FBR of eq
9, the Hamiltonian matrix is diagonally dominant. Thus, we first
transform the forces on the DVR coefficients into the FBR by
using the inverse of the transformation matrix, eq 11 and divide
the forces by the diagonal elements of the kinetic energy matrix.
Therefore, each orbital force is multiplied in the FBR by

where

andKnn
a is the kinetic energy matrix in FBR for the coordinate

a. The resulting force vectors are then transformed back to the
DVR basis by the transformation matrix.

The efficiency of the CG minimization scheme described
above for a system of 32 water molecules in a cubic cell of
18.6226 bohr is shown in Figure 2. In the figure, the conver-
gence rate, log(E - Econverged) is plotted. The calculation was
performed using a grid spacingh ) 0.25 au, which is equivalent
to an 160 Ry energy cutoff of a density expansion in a PW
calculation (or a 40 Ry cutoff of the orbital expansion in a PW
basis). The performance of the CG minimization shown in
Figure 2 for a DVR basis set is similar to that which is usually
achieved with a PW basis set.

To compare the total energy convergence with basis set size
for DVR and PW basis sets, we show, in Figure 3, the total
energy of 32 water system as a function of the number of grid
points for the two basis sets. For the PW basis, the abscissa
specifies the number of grid points used to represent the
electronic density on the real-space grid. It can be clearly seen
from the figure that the total energy is converged within 2×
10-3 hartree (∼1.3 kcal/mol) to the fully converged value
(-313.876 hartree) with 753 grid points (h ) 0.25 au as above)
when a DVR basis set is used. For PW basis, at least 300Ry
energy cutoff (N ) 200) is needed to obtain a comparable
accuracy. At this cutoff, the number of (complex) orbital PW
expansion coefficients on a spherically truncated grid is 281808,
the number of (complex) density PW coefficients is 2250783,
whereas the number of real-space grid points is 8 million

Figure 2. Convergence rate of the total energy minimization for a 32
water system in a cubic periodic box with 75 DVR basis functions per
coordinate. The convergence rate, log(E - Econverged), is plotted with
respect to the conjugate gradient minimization steps. In this test, a
preconditioner defined in eq 40 is used to accelerate the convergence.

[K̃lmn
l′m′n′]-1 ) (K̃ll

x + K̃mm
y + K̃nn

z )-1δll ′δmm′δnn′ (40)

K̃nn
a ) {Knn

a |kn| > knc

Kncnc

a |kn| e knc
} (41)
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compared to 421875 DVR grid points. Note that AIMD
simulations of liquid water are usually performed with a PW
basis set truncated atEcut

(orb) ) 80 Ry, where the total energy is
∼0.43 hartree (270 kcal/mol) away from the converged value.
In CPAIMD simulations, the convergence of the atomic forces
is more important than the energy convergence. In Figure 4 we
show the convergence of the atomic force measure:

The figure shows that improved convergence of the forces is
also achieved within the DVR scheme. The efficiency of the
DVR basis allows a CPAIMD simulation of liquid water in the
complete basis set limit to be performed and the structure of
the liquid within a given approximation to the exchange and
correlation functional to be accurately determined

B. AIMD Simulation of Liquid Water. To provide an
additional test of the accuracy and stability of the DVR based
approach, we performed a CPAIMD simulation of liquid water.
Liquid water is one of the most studied liquid phase systems
using AIMD simulation techniques and has become a benchmark
system to test and improve new algorithms. In particular,
structural and dynamical information obtained from PW based
CPAIMD simulations has provided valuable insight into the
nature of hydrogen bonding and the unusually fast proton
transport mechanisms in water.56,57As noted in the Introduction,
a simulation of liquid water using real-space methodology has
not yet been reported other than a short (0.14 ps) test run.26

Therefore, to develop an efficient linear scaling CPAIMD

technique, it is important to assess the stability and accuracy of
DVR based CPAIMD simulations of liquid water.

In the present work, an AIMD simulation based on the Car-
Parrinello type adiabatic equations of motion is carried out for
32 water molecules in a cubic periodic box (L ) 18.6226 au)
at the Gamma-point of the Brioullin zone. The electronic
structure is represented within the Kohn-Sham (KS) formalism
of density functional theory using the BLYP31,32 exchange-
correlation functional. The ability of this functional to describe
accurately the structure of liquid water has been the subject of
a recent controversy in the literature.33-37,39-41 The Kohn-Sham
orbitals are expanded in a DVR basis set corresponding to 753

grid points (h ) 0.25 au). As shown in the previous section,
this grid setup leads to an energy convergence within 2× 10-3

hartree. Core electrons are not treated explicitly but rather, the
atomic pseudopotential of Troullier and Martin (TM) type52 are
employed in conjunction with the Fourier filtering scheme
described in section II.

The initial configuration was taken from a separate CP run
of 32 waters equilibrated for 5.2 ps at 300 K with a PW basis
set cut off at 70 Ry using a Nose´-Hoover chain thermostat58

on each degree of freedom. Following this, a run of 3.5 ps was
performed with the same thermostating scheme using a slightly
coarser grid of sizeh ) 0.28 au. Following this a run of 18 ps
was performed using theh ) 0.25 au grid. Again, the
temperature of the system was maintained at 300 K throughout
the 18 ps DVR/CPAIMD simulation using a Nose´-Hoover
chain thermostat58 on each degree of freedom. The structural
information of the system was obtained from the last 10 ps
CPAIMD trajectory. The average temperature during the 10 ps
production run is 298 K. As CP parameters, a time step of 0.05
fs along with a fictitious mass parameterµ ) 500 au was
employed. As shown below, this combination of fictitious mass
and time step preserves the adiabatic separation between the
ionic and electronic motions throughout the simulation. To
reduce nuclear quantum effects, all protons were assigned the
mass of deuterium. This mass assignment does not affect any

Figure 3. Total electronic energy of a 32 water system in a cubic
periodic box obtained by preconditioned conjugate gradient minimiza-
tions of the energy functional using (a) DVR basis and (b) plane wave
basis. The energy is plotted versus the number of DVR grid points per
coordinate and number of density FFT grids per coordinate in the case
of PW calculations. The orbital energy cutoffEcut

(orb) ) 300 Ry
corresponds to 2003 point density grid per coordinate andEcut

(orb) ) 90
Ry corresponds to 1203 point density grid in (b). The inset in (a) shows
the energy convergence on a finery-scale.

Figure 4. Atomic force measure, eq 42, in kcal/(mol‚Å) corresponding
to each point in Figure 3 for (a) DVR basis and (b) plane wave basis.

Fh ) x1

N
∑
I)1

N

|FI|2 (42)
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structural properties, such as radial distribution function. The
calculation is performed with the DVR version of the PINY_MD
package.42

In Figure 5, the temperatures of the ionic and electronic
degrees of freedom throughout the 18 ps constant temperature
(NVT) simulation based on the DVR/CPAIMD scheme are
plotted versus the simulation time. The adiabatic separation of
these two temperatures is the fundamental requirement for a
successful CPAIMD simulation. In particular, the stability of
the temperature of fictitious electronic degrees of freedom is
critical. As shown in the figure, excellent temperature control
is maintained throughout the simulation, which indicates
negligible exchange of energy between the ionic and electronic
degrees of freedom. As pointed out by Kuo, et al.,36 microca-
nonical ensemble (NVE) simulations following a few picosec-
onds of equilibration of liquid water system do not guarantee
the equipartitioning of internal energy. A significant drift (>10
K36) in the ionic temperature was observed in NVE simulations
regardless of the methods of simulation, both CPAIMD and
BOAIMD simulations. In this sense, a constant temperature
simulation with an efficient thermostating scheme is essential
to determine accurately the structure of liquid water. As shown
in Figure 5a, a Nose´-Hoover chain thermostat58 coupled to each
degree of freedom maintains the temperature without a drift
and improves canonical sampling. The importance of the Nose´-
Hoover chain thermostat as a means of controlling the temper-
ature of fictitious degrees of freedom and performing longer
simulations is also discussed in ref 36. However, as shown in
Figure 5, the choice of time step and fictitious mass permit a
long, stable simulation to be performed.

Figure 6 shows the oxygen-oxygen (gOO(r)), oxygen-
hydrogen (gOH(r)) and hydrogen-hydrogen (gHH(r)) radial
distribution functions (RDFs) obtained from a DVR/CPAIMD
simulation. Each RDF was calculated using a bin size of 0.03
Å. The same bin size was used in recent CPAIMD studies of

liquid water.34,35 The RDFs calculated using a bin size 0.02 Å
were found indistinguishable from those reported in Figure 6.
On the same plot, we show the experimental RDFs from the
neutron scattering data of Soper and co-workers59,60 and, for
OO, we also show the X-ray scattering data of Head-Gordon
and co-workers.61,62 Overall, the agreement between the com-
puted and experimental RDFs is quite good. The notable
difference is a slight overstructuring of the second solvation
shell ingOO(r) compared to experiment. The height of the first
peak in oxygen-oxygen RDF,gOO

max, is 2.95 and the location of
maximum,rOO

max, is 2.77 Å. These are in good agreement with
the results of recent CPAIMD studies of water36,40with the same
types of exchange-correlation functional and pseudopotential,
but with a PW expansion of the orbitals, which reportedgOO

max

) 3.0 andrOO
max ) 2.75 Å at 314 K36 andg00

max ≈ 3.1 andrOO
max )

2.73 Å at 300 K.40 The coordination number was also computed
by integratinggOO(r) up to the first minimum. The coordination
number obtained from Figure 6a is 4.2, which is close to the
value for tetrahedral geometry. The oxygen-hydrogen RDF
shown in Figure 6b has the first and second peaks located at
1.81 and 3.28 Å with the peak height 1.49 and 1.64 Å,
respectively. These numbers also agree quite well with the
results reported by Kuo et al.36

The structural parameters obtained recently by Grossman et
al.34 from CPAIMD simulations under microcanonical ensemble
(NVE) condition with a Hamann type pseudopotential63 appear
to be overstructured compared to the present work and that of
refs 36 and 40. These authors reportedgOO

max ) 3.60 at 298 K
for 32 water molecules with both BLYP and PBE64 XC
functionals. The differences ingOH(r) andgHH(r) between our

Figure 5. Instantaneous values of the (a) ionic temperature and (b)
fictitious electronic temperature over an 18 ps DVR/CPAIMD simula-
tion of 32 water system in a cubic periodic box (L ) 18.6226 au). 75
DVR functions were used for each coordinate. For the simulation
parameters, a fictitious massµ ) 500 au and a time step of 0.05 fs are
used along with a Nose´-Hoover chain thermostat coupled to each
degree of freedom to maintain the ionic temperature at 300 K.

Figure 6. Radial distribution functions (RDF) obtained from an 18 ps
DVR/CPAIMD simulation of 32 water molecules under the condition
described in Figure 5 (Solid lines). Only the last 10 ps data are used to
generate the RDFs. For comparison, experimental RDFs from the
neutron scattering data of Soper and co-workers59,60(dashed lines) and,
for OO, from the X-ray scattering data of Head-Gordon and co-
workers61,62 (dot-dashed line) are also plotted. Each panel represents
RDF of (a) oxygen-oxygen (b) oxygen-hydrogen and (c) hydrogen-
hydrogen, respectively. A bin size 0.03 Å is used for all three RDFs
from the DVR/CPAIMD simulation.
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calculations and those by Grossman et al.34 are much smaller,
but noticeable. For instance, the height of the first intermolecular
peak ofgOH(r) is 1.8 in ref 34, which is higher than the second
peak. However, the opposite trend is found in the present study.
The radial distribution functions recently reported by Vande-
Vondele, et al.,38 which employ Gaussian basis sets, different
pseudopotentials, and NVE sampling, are also somewhat more
structured than those obtained here. The PBE functional, on
the other hand, seems to consistently generate overstructured
liquid water, as reported by several groups.33,35,39Schwegler et
al.35 recently performed extensive simulations with 54 and 64
water molecules under NVE condition and found that the PBE
functional generates significantly overstructured liquid water.
For 54 water molecules, CPAIMD simulations yieldedgOO

max )
3.65 at 296 K andgOO

max ) 3.21 at 345 K. Similar behavior was
also found in the BOAIMD study by Asthagiri et al.33 who
reportedgOO

max ) 3.7 at 337 K for the PBE functional. As in ref
34, the simulations of Asthagiri et al.33 also employed NVE
ensemble conditions.

More recently, Fernandez-Serra and Artacho37,41and Sit and
Marzari39 observed a sudden structural change after about 10
ps of AIMD with the BLYP and PBE functionals, respectively.
As a result, a large difference ingOO(r) before and after 10 ps
was found. However, such behavior was not observed in the
present work, likely because our initial configuration is already
well equilibrated and effective sampling is ensured via the
aforementioned thermostating protocol. To make sure that there
is no systematic variation of the structural data during the
simulation, we computedgOO

max using blocks of 2 ps data. As
pointed out by Grossman et al.,34 gOO

max has a rather short
correlation time and 2 ps of data can provide an independent
measure ofgOO

max. We foundgOO
max ) 3.05, 3.19, 2.86, 2.83, 3.00

during the production run (last 10 ps). Although five blocks of
2 ps data are not enough to draw a definite conclusion,gOO

max

values from our DVR/CPAIMD simulation seem to be well
converged.

Overall, a long-term stability was achieved in the simulation
of liquid water using the DVR/CPAIMD approach. This was
shown in the excellent adiabatic separation between the ionic
and electronic degrees of freedom. The energy conservation
during the simulation, as measured by the quantity

whereEi is the conserved energy at stepi, E0 is the initial energy,
andNstep is the total number of MD steps performed, was on
the order 10-9. These observations ensure the validity of force
evaluation described in section III. As pointed out earlier, even
a small error in the force calculations might ruin the stability
of CPAIMD simulations. The structural information of liquid
water obtained in this work from DVR/CPAIMD simulation is
also in good agreement with the recent CPAIMD study by Kuo
et al.36 and of Mantz et al.40 with the same types of functional
and pseudopotential, but with a plane wave expansion of the
orbitals. A more detailed analysis of the DVR water study will
be reserved for a future publication.

V. Conclusion and Future Work

In this paper, the algorithmic details for Car-Parrinello ab
initio MD simulations using DVR basis sets were presented.
Unlike typical plane wave based CPAIMD methods, only two
FFTs are needed to compute the energy and coefficient forces.

We successfully performed a long term simulation of liquid
water using the DVR approach and ensured the accuracy and
stability of the DVR/CPAIMD scheme. With a relatively small
number of grid points, we were able to run a simulation very
close to the complete basis set limit with the DVR basis. The
validity of the method was tested by comparing the structural
information derived from a DVR/CPAIMD run to the existing
data obtained from PW/CPAIMD calculations. To the best of
our knowledge, this is the first successful simulation of liquid
water using a real-space approach that generated accurate
structural information.

The success of the present liquid water simulations provides
us a unique opportunity to further investigate the structural and
dynamical properties of the liquid water and aqueous solutions.
As mentioned in section IV, the properties of liquid water
obtained from numerous groups using AIMD techniques do not
always agree with each other,33-37,39-41 especially at ambient
conditions. However, as pointed out in refs 36 and 38, a likely
source of the difference is the nonergodic behavior at lower
temperature, in particular under NVE conditions. Therefore, the
use of a thermostating scheme is clearly important for ensuring
proper generation of static equilibrium properties. However,
there are many other factors to be taken into account to
investigate the effect of equilibration. For instance, AIMD
studies have used a variety of basis sets with varying degrees
of total energy convergence, but the effect of energy conver-
gence on the properties of liquid water for a given functional is
not clear. An advantage of using the DVR/CPAIMD scheme
over the PW/CPAIMD method is the ability to reach the
complete basis-set limit.

Another important implication of the success of the DVR/
CPAIMD scheme for liquid water is that the method can be
used to develop a linear scaling AIMD simulation technique.
Recently, Fattebert and Gygi proposed a linear scaling scheme
based on the BOAIMD method.26 Although they did not
explicitly show the scaling of their method, they were able to
run dynamics with a localization constraint for a short period
of time (1 ps for deuterium and 0.14 ps for 64 water). Because
the merits of BOAIMD vs CPAIMD remain unclear,3,27 it is
useful to devise a linear scaling method based on the CPAIMD
scheme. We are currently developing such a method based on
“on-the-fly” localization of the occupied orbitals. In particular,
we are undertaking theoretical groundwork using nonorthogonal
orbitals,16,65,66 which provide greater degree of localization
compared to the orthogonal ones.
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Appendix A: Euler Exponential Spline Interpolation for
the Nonlocal Pseudopotential Calculation

In this appendix, we briefly describe an alternative expression
for the nonlocal energy based on the Euler exponential spline
interpolation.67 More details of the algorithm can be found
elsewhere.54 We first express the functionFJlm(r - RI(J)) in terms
of a Fourier series as

where F̃Jlm(g) is not an FFT ofFJlm(r ) but an exact Fourier
transform given as

FJlm(r-RI(J)) )
1

V
∑

g

F̃Jlm(g)eig‚(r-RI(J)) (A1)

F̃Jlm(g) ) 4πYlm(θg,φg) ∫0

∞
r2j l(gr) VJl(r) φJl(r) dr (A2)

∆E ) ∑
i)1

Nstep|Ei - E0

E0
| (43)

5558 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Lee and Tuckerman



whereφJl(r) is the ground statel-channel radial eigenfunction.
Next, an Euler exponential spline (EES) interpolation to the
atomic structure factor in eq A1 is introduced to give

whereĝa and ŝa are integers,Na is the number of grid points
along thea direction,uI,a is the fractional coordinate (real) of
atomI for the coordinatea (0 e uI,a < Na), Mp(u) is a Cardinal
B-spline function,67 anddp(ĝa,Na) is the corresponding weight.
B-spline functions are continuously differentiable and have finite
support. Substituting eq A3 into eq A1, we obtain the inter-
polation formula on the grid points,

whereh is the cell matrix andŝ′a is the fractional coordinate
(integer) for the grid pointr ′ ) hŝ′. Note thatøJlm(s) does not
depend on the atomic positions and therefore it needs to be
evaluated once. Because the Fourier transformF̃Jlm(g) is not
truncated at 2ĝmax ) (Na, Nb, Nc), the projector can vary on
length scales smaller thansR ) NR

-1. Letting ĝ f ĝ + Ĝ where
- NR/2 < ĝa e NR/2 andĜa ) MRNR,

becausedp(ĝR,NR) and the complex exponentials are periodic
functions ofG. The functions,F̃Jlm(g+G), go to zero exponen-
tially quickly at large argument,|g + G| and convergence of
the G sum is rapid.

The length of summation overŝ depends on the order of
interpolation,p, and does not increase as the system size grows.
In practice, bothF̃Jlm(g) andøJlm(s) are computed and stored at
the beginning of simulation. Then, the sum over the integers,
ŝa, for each atom is performed as in eq A4 for all pointsr ′
around each atom type within the radial cutoff. Finally,ZiI (J)Jlm

is computed as defined in eq 33 by summing over the spherically
truncated grids around each atom. Because the truncation radius
does not increase with the system size, the computational cost
of computingZiI (J)Jlm for a given state (i) and atom (I) becomes
system size independent and the overall cost of computing
nonlocal energy and force scales asO(N2).

The forces on the atoms can also be computed in an efficient
and straightforward manner. As shown in eq 34, evaluation of
atomic forces requires the derivative ofFJlm(r ′-RI(J)) with
respect to the atomic positions. However, within the Euler spline
interpolation formalism, the only term that depends on the
atomic position is theB-spline function. Therefore, the expres-
sion for the derivative ofFJlm(r ′-RI(J)) is identical to eq A4
with Mp replaced by its derivative, which can be computed easily
through the recursion relation,
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ŝ

[∏
a
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ĝ
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ĝ
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R
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d
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