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Finite temperature ab initio molecular dynamics (AIMD), in which forces are obtained from “on-the-fly”
electronic structure calculations, is a widely used technique for studying structural and dynamical properties
of chemically active systems. Recently, we introduced an AIMD scheme based on discrete variable
representation (DVR) basis sets, which was shown to have improved convergence properties over the
conventional plane wave (PW) basis set [Liu,Y.; etRilys. Re. B 2003 68, 125110]. In the present work,

the numerical algorithms for the DVR based AIMD scheme (DVR/AIMD) are provided in detail, and the

latest developments of the approach are presented. The accuracy and stability of the current implementation

of the DVR/AIMD scheme are tested by performing a simulation of liquid water at ambient conditions. The
structural information obtained from the present work is in good agreement with the result of recent AIMD
simulations with a PW basis set (PW/AIMD). Advantages of using the DVR/AIMD scheme over the PW/
AIMD method are discussed. In particular, it is shown that a DVR/AIMD simulation of liquid water in the
complete basis set limit is possible with a relatively small number of grid points.

I. Introduction have associated basis functions because the electronic orbitals
are discretized on a 3-dimensional (3D) grid. However, an
advantage of real-space methods is that they are inherently local
and can be efficiently implemented on massively parallel
computers. The Hamiltonian matrix is very sparse, and efficient
matrix—vector multiplication algorithms can be used to obtain
the Kohn-Sham orbitals. In addition, when real-space methods
are combined with an orbital localization scheme, the result is
a method that can be made to scale linearly with respect to the
_system sizé! In fact, a large scale~{1000 atoms) electronic

Over the last two decades, substantial theoretical and
algorithmic advances in the area of ab initio molecular dynamics
(AIMD) simulations have been made? These methods, which
employ a density functional theory (DFT) representation of the
electronic structure, are now routinely used to interpret experi-
mental data and predict the properties of a wide variety of
materials. A widely used AIMD technique is the C&arrinello
ab initio molecular dynamics (CPAIMD) based on the extended
Lagrangian approach and, in most implementations, a plane . .
wave (PW) expansion of the electronic orbitaEhe efficiency structure calculatrlon was .performed Wlth a reql-space method
of CPAIMD comes from the fictitious dynamics of the orbitals 2"d showed that/(N) scaling can be achieved in practice.
that allow “on the fly” generation of the interatomic forces. ~ The numerical methods to solve the KetBham equation
Although the PW basis is conceptually simple and widely used On a real-space grid have been pioneered by B&Bkynholc;®
for periodic systems, it has one critical disadvantage: PW basedand Chelikowsy? In the usual implementation of real-space
algorithms scale ag(N2M), whereN is the number of occupied ~ methods, gradient and Laplacian operators are discretized on
electronic states anlll is the number of basis functions. This the grid and a high order finite difference scheme is used to
bottleneck currently limits the application of CPAIMD up to a approximate the kinetic energy operator. Potential energies,
few hundred atoms. In addition, PW based methods rely heavily which involve the overlap integrals between the electronic
on the use of fast Fourier transform (FFT), and this reliance is orbitals and the atomic pseudopotentials, are evaluated directly
not optimal for massively parallel computers due to the need on the grid by summing the values of integrand over the grid
for global (all-to-all type) communications among processors. points. However, the Hartree potential cannot be computed

To overcome these difficulties, many alternatives have been directly on the grid because it leads to a prohibitively expensive
introduced, including novel parallelization scherfé§aussian double summation over the grid points. Instead, the Hartree
basis set8’ hybrid Gaussian/PW basis séiand real-space  potential is obtained by iteratively solving the Poisson equation
approache%:12 Some of these alternative methods have attracted with the proper boundary condition. Because the KeBham
increasing interest in recent years for the development of linear equation is a nonlinear equation that requires iterative updates
scaling (9(N)) electronic structure calculatioA$:® Real-space of solutions, each update step involves an iterative solution of
methods, such as finite differedéand finite element? do not the Poisson equation. Various types of multigrid metRdefs
have been developed to accelerate the convergence of the
T Part of the special issue “John C. Light Festschrift”. iterative solutions of both the KohtSham equation and the
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Poisson equation. For more technical details of multigrid DVR/CPAIMD scheme. Here, we present preliminary results
methods and their applications to the solutions of the Kehn of our simulation of liquid water and focus on the accuracy
Sham equation as well as linear scaling electronic structure and stability of the DVR/CPAIMD scheme with the BLYF2
calculations, readers are referred to the review by Béck. exchange-correlation functional. With the grid spacing used in
Although ()(N) scaling electronic structure calculations have this work, the total energy of a 32 water system is converged
been actively pursued, only a limited number of AIMD studies to within 1072 hartree, whereas the typical 70 Ry energy cutoff
with real-space methods have been repofted .26 In fact, to in PW calculations leads to a total energy more than 1 hartree
the best of our knowledge, the most complicatethdensed  from the converged value. Therefore, a DVR basis allows us to
phasesystem that has been successfully simulated so far with perform a CPAIMD simulation of liquid water at ambient
a real-space method is a liquid silicon syst&mlo real-space conditionsat or near the complete basis set lim&iven the
method has yet been applied to study aqueous systemsfact that recent AIMD studies of watét; %! all based on PW
Furthermore, most real-space AIMD methods are based on theor hybrid Gaussian/PW basis sets, showed a wide range of
so-called Born-Oppenheimer ab initio molecular dynamics structural parameters, depending on the basis set, equilibration
(BOAIMD) scheme, where the electronic wavefunctions are method, exchange-correlation functional, and type of ensemble,
explicitly quenched to the ground state at each AIMD step. the results obtained from DVR/CPAIMD simulations that

Although a larger time step can be used in BOAIMD simulations accurately describe the electronic structure of water can shed

BOAIMD scheme requires a very strict convergence criterion gensity functional.
for minimization of the Kohn-Sham functional at each time
step to avoid substantial drifts in the conserved energy. The
question of the relative efficiency of CPAIMD vs BOAIMD is
still being debated in the literatufé’ To develop an efficient
linear scaling AIMD method, we choose to develop an accurate
and stable scheme based on real-space methods within th . . .
CPAIMD framework. However, due to the extreme sensitivity PSeudopotential calculation. In section IV, the accuracy and
of CPAIMD simulations to the continuity and accuracy of the IMProved efficiency of total energy calculations are discussed
force evaluations, difficulties may arise when typical grid-based @S Well as the preconditioner used in the energy minimization
methods are applied to the CPAIMD scheme. Even a small procedure. This will be followed by preliminary results of a

random error can jeopardize the long-term stability of CPAIMD  liquid water simulation under constant volume and temperature
simulations. conditions. Conclusions and future work are given in section

V.

The organization of this paper is as follows. In section II,
the basic properties of DVR bases are briefly described.
Following this, a succinct description of the current implementa-
tion of the DVR/CPAIMD scheme is presented in section Il
é(vith particular attention given to the nonlocal part of the

Recently, we developed a discrete variable representation
(DVR) approack?2°for CPAIMD simulations as an alternative
real-space method for the implementation of AIMD calculations |I. Discrete Variable Representation (DVR)
on massively parallel computet$DVRs have been extensively I .
used in the nuclear quantum dynamics community for decades. "€ Qefmltlonsa;nd properties of DVRs are well documented
but it is a new approach for electronic structure calculations " te literature?®2%In this section, we only provide the basic
and AIMD simulations. Unlike conventional real-space methods, CONCepts that are relevant to our application of the DVR method
a DVR is abasis setapproach, and the kinetic energy is to (_ZPAIMD simulations. There are sever_al equivalent ways to
evaluatecexactlyfor the specified basis set. DVR basis functions define a DVR, for example, using classical orthogonal poly-
are |Oca||zed in Space but deﬂne‘brywhere not Just on gr|d n0m|als (Chebyshev, Hel‘mlte, ) and an aSSOCIated GaUSSIan
points. Consequently, they do not employ explicit spatial cutoffs. quadrature. However, all that is required is the specification of
As in a plane-wave basis set, the orbitals are represented by & set of functiond C(X)} that satisfy an orthogonality relation
set of expansion coefficients. However, in a DVR, a one-to- With respect to an appropriate weight functiefx):
one correspondence exists between coefficients and grid points.

Moreover, the independence of the basis functions on the atomic fba)(x) C(x) C () dx= 6, 1)
positions makes the calculation of atomic forces easier to a

evaluate than in a basis of atom-centered basis functions such ) ) ) . )
as Gaussians. In our previous publicat®nye demonstrated If we define our basis functions (often called a finite basis
the advantage of DVR basis sets over PW basis sets in termsrepresentation, (FBR)) agi(x) = Vo (X)Ci(x), the overlap

of the energy cutoff required to converge the total energy of integrals can be evaluatedxactly with N-point Gaussian
solid silicon and a single water molecule. We also showed the quadrature for &< I, m< N — 1:

stability of CPAIMD simulations with DVRs by performing a

short (2 ps) simulation of solid silicon system. N o
b X * X
In the present work, we describe the newest developments fa¢| () P AX =y ——(Xy) Dr(Xe)
of the original approach and apply the current implementation =10 (Xy)
of the DVR based CPAIMD scheme (DVR/CPAIMD) to N
simulate a liquid water system thgt consists of 32 water =Y 0,C'(x,) CpX,)
molecules in a periodic box. To obtain accurate results for the &

liquid water system, a simulation of at least 20 ps or more is

necessary. In addition, the highly repulsive oxygen pseudopo- =0 (2)

tential makes it difficult to perform an accurate and efficient

CPAIMD simulation of liquid water with any real-space method. where{x,} is a set of Gaussian quadrature points fag} are

Therefore, the liquid water system serves as an important the corresponding quadrature weights. Bec&lpeint Gaussian
benchmark to test rigorously the accuracy and stability of the quadrature is exact for integrands up to orddr-2 1, the
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coordinate matrix for basis functiod#(x)} can be evaluated for | =1, 2, ..., N + 1, whereL is the box length and the

exactly with the same quadrature: number of basis functions iS\2+ 1. For periodic functions,
) an equally spaced grid ensures the accuracy of the Gaussian
Xim = f ¢I*(X)X¢m(x) dx guadrature (or Gauss-Chebyshev quadrature of the first kind),
a and the DVR points are given by
N,
= 3 — (%X Prl%e) 3) - -
Lo(x) m Xy = 2N+1(a N—1) a=12.,N+1 (10)

From eq 3, the elements of the “transformation matrix” is and the elements of transformation matrix become
defined as

— 1 271K Xo/L
T, =———¢€ (12)
4 VaNF1
Tal ¢I( ) (4) . . o .
(Xu) Hence, for a one-dimensional periodic system, a DVR function

fi licitl
and the coordinate matrix in a DVR is formally defined through can be defined explicitly as

the transformation matrix as ONE1

27K (X = %)
X =TXMET ®) W)= Z LN+ 1) L

whereXPVR is a diagonal matrix whose elements are the “DVR
points”, {x}. Note that the matrix is unitary due to eq 2.
The transformation matrix defined in eq 4 leads to the formal
definition of the DVR basis functiong,u,(X)}, corresponding

to the DVR points{xq}:

Note thatw(x) = 1 andw, = L/(2N + 1) for an equally spaced
grid. Finally, for the system with three-dimensional periodic
boundary conditions, a direct product of one-dimensional DVR
functions for each coordinate,

D (1) = U () Ugy) U, (2) (13)

can be used to define a three-dimensional DVR for a simple
cubic box. Extensions to noncubic boxes is straightforward.
As is clear from the definition, eq 6, DVR functions are

continuous and defined everywhere in space. One of the mostlll. Car —Parrinello Molecular Dynamics with DVR

important properties of a DVR function is that the values of The Car-Parrinello AIMD scheme is based on an extended

N
Uy(X) = ;Tm(x) (6)

Us(X) are zero at all DVR points excepy: i.e. system Lagrangian, which describes the dynamids aficlei
and introduces a fictitious adiabatic dynamicd\gforbitals as
=NT! a means of propagating the optimized electronic structure from
Ug (%) 1aP1(X5) . . . R
one nuclear configuration to the next without explicit minimiza-
tion. The Lagrangian is given by
w(X,)
=\ "o Pu 7) NN
B .f’=ﬂzﬁlﬂilwiﬂ+ EZMIRI —Ef{y}{R}] +
= =
To obtain the second equality in eq 7, the fact thatfthmatrix
is unitary was used. With the above definition of the DVR ZAij(@iWJD_ 5"‘) (14)
functions, the overlap integrals for the DVR functions are also )
equal to the Kronecker delta (cf. eq 2) whereu is a time-scale parameter associated with the fictitious
N o orbital dynamicsM, and R, are the mass and the position of
b _ 14 atoml| and{Aj;} is a set of Lagrange multipliers that impose
L Uq () U lx yZ\w( Us(,) Us(,) the orthonormality of the orbitals. The atoms and orbitals are

propagated simultaneously via an adiabatic dynamics scheme
in which the orbitals are kept “cold” compared to the nuclei,

_ Lo, w(xy) w(xy) such that the electronic orbitals closely follow the instantaneous
S 0(x) o ¥ w. P Born—Oppenheimer ground-state surface. The electronic energy,

4 % 4 4 E, which serves as the potential energy for the atoms in the
= 6aﬁ (8) system, is usually computed by using density functional theory

(DFT). In the Kohn-Sham formulation of DFT, the energy
The choice of FBR functions is usually determined by the functional is given by
boundary conditions of the problem. In many condensed-phase
applications, the system is confined in a three-dimensional E[{%i} {R}] = T{{y}] + E4[n] + E[n] + E\({R}}) +
periodic box. In these cases, the DVR functions can be E.In{R}] (15)
constructed from plane-wave-like functions (or Chebyshev
polynomials), and the one-dimensional (1D) FBR functions where n(r) = 3; filyi(r)|? is the electron densityf; is the
{¢1(¥)} can be defined infL/2, L/2] as occupation number of thi¢h orbital, Ts is the kinetic energy of
the Kohn—Sham noninteracting electron systef, is the
(X)) = 1 g2kl k=-N,—N+1,...,N (9 Hartree energykxc is the exchange-correlation energy dfg
\/[ is the electrostatic interaction between the atoms.
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In the present DVR based DFT scheme, the keBham where
orbitals are expanded in terms of direct products of one-

dimensional DVR functions, eq 13, such that 27\2N
ty = _(_) =(N+ 1)6nn‘
wi(r) = gcgﬂ Dy, (1) (16) 272\, o [aln—n)
| & Y 14 T (_1)n n co
Py . . : , (1= 0n) (23)
where{ C'uﬂy} is a set of expansion coefficients for the state 4 sir? a(n—n)
A DVR expansion of the orbitals leads to the density expression,

n(r) = Zm;claﬁyq)aﬁy(rnz (17) whereNg = 2N + 1 is the number of grid points aridis the
ooy length of the box in a given direction. Efficient implementation
of the kinetic energy in a DVR basis requires transposition of
the orbital coefficient matrix so that, for each spatial direction,
0(F ) = summations are performed over an index that is contiguous in
a'py memory. This operation requires an all-to-all communication
Zf anﬁyQDGﬂy(ra ) Z Coupry Py () (18) step. We note that although it is not possible to truncate the
primitive kinetic energy matrixt,y, improved efficiency in the
_ Z £ c. (19) caI(_:uIation of the total kinetic energy is expected when localized
o' By orbitals are used.

(b) Hartree Energy. In the DVR approach, the Hartree

It should be noted that, unlike conventional real-space energy and coefficient forces are computed in reciprocal space
methods, the electronic orbitals and density expressed in termsbecause the Hartree energy involves not only an expensive
of DVR functions are defined everywhere in space and each double summation over the grid points but also a divergent
term in the energy functional has a well-defined expression. In Coulomb term, ¥ In reciprocal space, the Hartree energy
the following, we describe the energy and force expressions Simply becomes
for each term that appears in the energy functional of eq 15
within the DVR formalism as well as the current implementation
of the method in the PINY_MD cod®. For simplicity, we Vzn
assume that the number of grid points along each coordinate is &
the same, but the extension to a noncubic grid is straightforward.
For a cubic grid, only the grid spacinlg, controls the accuracy
of the total energy calculation. Note that a grid spadinig
equivalent to an energy cutoff/h? Ry in plane-wave calcula-
tions. If a single grid is used to represent both the orbitals and
the density, as done here, theris required to be small enough
to describe the spatial fluctuations of the density. In this case
m?/h? would correspond to the energy cutoff of a density
expansion in a PW basis. However, one could also imagine using
a grid spacing of B to describe the orbitals as a time-saving
measure. In this case, the energy cutoff of the orbital expansion
would be equivalent tor?4h?, which leads to the expected
relation between the orbital and density cutoffs in a PW basis,
namely, ECens) = 4g0),

cut

(a) Kinetic Energy The kinetic energy, first term in eq 15, v
can be evaluated exactly for a given DVR basis set and the E.=—5n(r,) (), Vn(r.z)) (25)
analytical expressions of the kinetic energy matrix elements for X Ng;, opyt xR ol o
our one-dimensional DVR functions, eq 12, are availdbEhe
full kinetic energy matrix, K“ﬁyj’, is then constructed by a  wheref,. is the exchange-correlation energy per particle. The
direct product of three one-dimensional kinetic energy matrices gradient of the electron density at a DVR poingg,, can be
for each coordinate, and the kinetic energy is obtained by derived analytically as

1 2 ke ¢
ZZfiEy)HV [y, L= Zfizg aﬂy 14 o«py (20) vxn(raﬁy) _ ZZf anﬂy () (26)

and the density at a DVR point is simply given by

_+¢(screen g)]m' + ¢(screento)|n00d
l9l” (24)

whereny is the Fourier component of the density corresponding
to the reciprocal space vectgy which is obtained by an FFT
of the density in real-space, eq Mis the volume of the unit
cell. The functiong(screenfg) is a “screening” function, derived

in refs 44-46, that allows nonperiodic systems to be treated
within a reciprocal-space approach.

(c) Exchange-Correlation Energy.lt is often necessary to
employ exchange-correlation (XC) functionals beyond the local
density approximation. When the generalized gradient ap-
proximation (GGA) for the XC functional and the real-space
method of White and Bird are uséd,E, is given by a
summation over the grid points as

: PR . W0\ D
The force on the orbital coefficier@,, is therefore given by
with analogous expressions for theandz components of the
aﬁy —2f; Z;ZKQM o«py (21) gradient. Because a DVR functiong(x), is continuous and
analytically defined as eq 6, its derivative,(x), can be
computed at all DVR points along a given spatial direction and
stored at the beginning of each simulation. To compute the
By _ forces on the DVR coefficients, the derivative of the density
ofy taa’aﬁﬁ’aw’ + tﬁﬁ Oner 5yy y’daa’aﬁﬁ’ (22) gradient with respect to the DVR coefficients must be computed.

For example, for the FBR of eq 9, the matK§/”" is given by
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For example, the derivative of thecomponent of density
gradient can be obtained from eq 26 as

avxn(ra’ﬁ’y’) 1 .
i - 2f| ZC:X”ﬂ’}/ uix”(xa)éaa’dﬁﬂ’éyy’ +
9Cep, W @y
Cii’ﬂy
——U(X)| (27)
W, Wy

As with the kinetic energy, the summations can be efficiently
computed by transposing the orbital coefficient array so that
the summation is always performed over points that are
contiguous in memory.

(d) Local and Nonlocal Energies.In the AIMD scheme,
core electrons are usually replaced by atomic pseudopotential
(Vpseud, and the external energ¥ex, in eq 15 is computed
according tEex = Y fildi| Vpseudpil] Atomic pseudopotentials
utilize a different radial potential for each angular momentum
channel |, m) of each atom type and therefore they are generally
nonlocal:

o m=l

Voseus™ Z%;ﬁ;w.w — Ry)limm|  (28)

whereJ runs over the number of atom typd$§)) denotes an
index| that runs over the atoms of each tyheand|Imlm| is
a projection operator. The summation oVés truncated at —

1 and, as a result, the pseudopotential operator is decomposed

of into two parts, specifically, local and nonlocal terms given,
respectively, by

Vpseud% ZZUJT(” - RI(J)DI
I§

-1 1

! ;%;;lA%'(lr — Ry Imim|
V,

+ Vpseud,NL

(29)

= pseud,loc

where Avy(r) = vy(r) — vi(r) and Tis the identity operator.
Like the Hartree term, the local part of the pseudopotential is

computed in reciprocal space because the local potential includes

a long-range term. In our previous woikonly the long-range
part of the local potential was computed in reciprocal space

and the short-range part was computed in real-space. Here, the

entire local potential is computed in reciprocal space. Therefore,
the local potential energy is computed by

EIoc = Z%f“(r) Zjloc,.](lr_Rl(J)l) dr

; | :
=5 S S e e (0) — 26 lg)
\Y,
Z% g (30)

wherezioc3(g) is the FFT of the local potentiadoc i(r) = vii(r)

and R, is the location of atoni of type J. Here, again, the
presence of the screening function allows for treatment of
nonperiodic systems within the reciprocal-space framework.
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be computed in a straightforward manner using the reciprocal
space energy expression.

The nonlocal part is further approximated and the fully
separable form of Kleinman and Bylanéfeis used such that

En = Z fiZ% Jdrdr” i) wilr)
T-1m=1

X Z) z ‘3|F§|m(r_R|(J)) Fam(r'—Ri)
=0m=—1

= z fi Z%Z ‘3|Zﬁ(J)J|mZi|(J)J|m
] I(J) Im

whereF;,(r) is an angular momentum and atom type dependent
function and. 13 is a weight factor. The functiofrym(r) is

(1)

goroportional to the radial part of the pseudopotential(r)

multiplied by a spherical harmoni¢y(0,¢). The quantityZ; im
is defined by

Zi@am= fdr Fam{r—Ryg) %i(r)

In our previous work? we evaluated the integral in eq 32 by a
direct summation over the DVR grid points according to

Zigoim= f;cixﬁyq)aﬁy(r) Fam(r =Ry dr
Y

(32)

; Cla/fycbaﬁy(rm'ﬁ’y’) FJIm(roUﬁ’y'_RI(J))wmwﬁwy
v'apy

a/Z N wuwﬁwycia/)’y Fam(r oy RI(J))
Y

To compute the forces on the atoms, the derivativ&@jim
with respect to the atomic positions is needed:

(33)

9Z;i 33im \/7@ aFJIm(ra/)’y_RI(J))
IRy % T IR,y
dAwy(r)

_ i
== g\/ B0y sy
14

Ylm(e(r7R|(J))1¢(r7R|(J))) + Avy(Ir—
aYIm(H(r—Rl(J))’ ¢(r—R|(J))) (ropy — Ri)

=1 gy -Rig)

Rl ) (34)

ar = Ry Ir = Ryl

where O¢-ry), ¢r-ryy) are the polar angles associated with
the vectorr g, — Ri(g. With the real-space expressionj{siim,

the force on a DVR coefficient can be computed in a
straightforward manner as

0By,
—2f; Z % Z ‘3|FJ|m(raﬂy_Rl(J))ZiT(J)Jlm\/ W W0,
1(J) Im
(3%)

However, the real-space evaluation of eq 32, whose integrand
consists of an atomic position-dependent funcigm(r — R()
and a field yi(r), is subject to an intrinsic problem called

3Cys,

Because both the Hartree energy and local potential energyaliasing If Fym(r) contains Fourier components of frequency

involve only the electron density (not the orbitals), we only need higher than the maximum frequency a given grid can support,
two FFTs to compute both terms. One FFT is needed to obtainthe summation in eq 33 becomes dependent on the relative
ng and the other is needed to transform part of the potential positions of the atoms with respect to the grid points. Therefore,
back to real space for the calculation of the orbital forces. The the total energy is not translationally invariant. Note that the

contributions to the atomic forces from the local potential can local potential energy (eq 30) contains a similar integrand, and
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it also suffers from aliasing. However, the problem is much -12.365 T
more serious for the nonlocal potential because it is short-ranged @
whereas the local potential has mostly long-range contributions.
The aliasing effect can be reduced by grid refinement
techniqued?50but such techniques increase the cost of nonlocal
energy and force calculations substantially in the DVR frame-
work. Instead, we take a more straightforward approach and
remove the high-frequency components of the nonlocal potential
by Fourier filtering at the beginning of the simulati##! Thus,
the nonlocal pseudopotential functions;(r) are first trans- -12.375
formed to reciprocal space by using a spherical Bessel transform: 11915

-12.370

Energy[Hartree]

ATy(Q) = @ Jo Au@i@nrtar - (36)

-11.920

whereji(r) is a spherical Bessel function of orderNonlocal
pseudopotentials in reciprocal space are then multiplied by a
switching function to damp out the high-frequency components.
In the present work, a switching function of the fdfim

Energy[Hartree]

-11.925 I | ) | 1 | I | 1
0.0 0.2 0.4 0.6 0.8 1.0

- —1)2 Displacement along axis [h

fg)=e=  g>g, @7 - Placement along &xts [
Figure 1. Variation of the electronic energy of single oxygen atom

(38) placed in a cubic periodic boxf@ A as its position changes with
respect to grid points. The unit afaxis is the grid spacind. In (a),
the results obtained for DVR basis€ 0.25 au) are shown with (closed

was used, wherge, = auz/h. For the nonlocal pseudopotential  circles) and without (open circles) the Fourier filtering. The results
of oxygen, we usedx = 0.85 andf = 20. The modified  obtained for plane wave basis wit’}) = 35 Ry energy cutoff are

pseudopotential functions are then transformed back to real-shown in (b). This energy cutoff leads to the density FFT grid with the
space by an inverse spherical bessel transform: same spacing as used in the DVR calculation.

5 TABLE 1: Convergence of the Electronic Energy for a
~ _ 0\~ : 2 Water Dimer in a Cubic Periodic Box of 15 Bohr for the
Aby(r) = \[—, oA @ f@1@NgPdg  (39)  puRand P Basic Sora

f@=1 9=

) » ) ) grid size
Finally, the modified nonlocal pseudopotential functions (Ego® E(DVR)  |AF| E(PW) Ne(Ndend |AE]|
Avy(r) are used in eq 33 and eq 35, to compute the nonlocal 37 (10) —37.2003 40.7254 —33.1202 896 (7182)  2657.5027
potential energy and force. 4% (25) —37.3576 1.5060 —35.5374 3562 (28139)  1140.6868

To demonstrate the effect of Fourier filtering, we monitored 6§§(35) —37.3551  0.06275-36.3767 5877 (47171) 614.0180
the electronic energy of single oxygen atom as its relative 73(50) —37.3551  0.06275-37.0060 10003 (80618) 219.1263

i~ . i . -~ 813(80) —37.3552 0 —37.3205 19660 (156211)  21.7745
position with respect to grid points changes. Specifically, an 15 (150) —37.3533 52472 (418909) 1.1923
oxygen atom is placed in a cubic periodic bdx8oA and the 144 (200) —37.3546 80618 (644880) 0.3765
electronic energies are computed as the atom is moved 16 (300) —37.3552 146916 (1170999) 0

diagonally from one grid point to the next. In Figure 1a, we  aThe pw cutoff EOP) given in parenthesis leads to the density

cut

show the variation of the total electronic energy with and without FFT grid with the specified number of grid points. The energies are
the Fourier filtering. As shown in the figure, Fourier filtering given in hartree and the energy differenc\E|) measures the
reduces the grid dependence of energy more than an order oflifference between the energy at each grid size and the converged
magnitude. For comparison, we also include a similar plot in energy in kcal/mol. Also given are the spherically truncated number

. . - - . of orbital (N¢) and density Nluend coefficients in PW calculations. Each
Figure 1b obtained from the calculations with plane wave basis atom that comprises the water dimer has the following Cartesian

set of EQP) = 35 Ry energy cutoff. This cutoff leads to the coordinates in A: (2.6068, 3.9843, 4.1112), (5.5148, 4.0192, 3.8806)
density FFT grid that has the same grid spacing as the DVR for oxygens and (2.2649, 3.2927, 3.5370), (2.2747, 4.8095, 3.7456),
grid used in Figure la. The grid dependence of energy is (5.9271, 3.8794, 4.7360), (4.5608, 3.9907, 4.0466) for hydrogens.

negligible in plane wave calculations, and it is on the order of Throughout the calculations, the atomic pseudopotentials of Troullier
0.0001 hartree foEC™® = 70 Rv. a tvpical eneray cutoff used and Martin (TM) typé? are employed in the KleinmarBylandef® form

- . . cut y, atyp gy for the nonlocal part of energy calculation with nonlo8azlomponents

in the simulation of liquid water. on the oxygens only.

As an illustration of the energy convergence of the DVR basis
set approach in conjuction with the Fourier filtering, the energy  In the CPAIMD scheme, the nonlocal part of the pseudo-
of a water dimer in a cubic periodic box of length 15 bohr was potential calculation is a major bottleneck along with the
computed as a function of the DVR grid spacing. The results orthogonalization step because both of these steps scale as
are reported in Table 1. The calculations were carried out with ((N3). This is clearly seen from eq 31 and eq 33 where each
the BLYP exchange-correlation functiofat?and the Troullier summation over, 1(J) and the grid points scales ag(N).
and Martin (TM) typé&? atomic pseudopotentials. The details Although this poor scaling is not a serious issue for small
of the algorithm to minimize the energy functional is described systems, it quickly becomes dominant in CPAIMD simulations
are section IV.A. From the table, it can be seen that the energy of larger systems. In real-space approaches, the scaling of the
is converged to within 1 kcal/mol of the fully converged value nonlocal part of the pseudopotential calculation can easily be
with 613 DVR grid points wherea&®"™ = 200 Ry is needed  reduced ta?(N?) by using the fact that nonlocal pseudopotential

cut
for PW calculations to achieve the same level of accuracy. functions Avy(r) are very short ranged. In other words, the
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summation over the grid points in eq 33 can be restricted to 4 I T T T
the points inside of a sphere around each atom. Because the
truncation radiusrg,) does not depend on the system size, the
cost of computing allZigum is reduced to(N?). However,
when Fourier filtering is used, the transformed potential,
Avji(r), does not strictly go to zero beyomd> r¢, and has a
long oscillating tail. Although the magnitude of the tail is small,
an arbitrary truncation causes a discontinuity in the forces, which
may be problematic for long time simulations. Because the
oscillating tail is not part of the original pseudopotential, a
switching function can be applied thoy(r) to damp out the
long range oscillation and make the potential rigorously go to
zero. For a switching function in real-space, we used the form 8 l L l L
described in ref 53 for test calculations. For systems containing 0 10 20 30 40 50
oxygen, the switching function might be taken to act, for No. of CG minimization steps

example, between= rq; — 0.5 au and = r. For the oxygen Figure 2. Convergence rate of the total energy minimization for a 32

- : . water system in a cubic periodic box with 75 DVR basis functions per
pseudopotential with the. and parameters specified above, coordinate. The convergence rate, Bt Ecomenel, IS plotted with

a grid spacing oh = 0.25 au combined W'th a truncation radius respect to the conjugate gradient minimization steps. In this test, a

rewt = 3.5 au leads to an agreement in the total energy of 32 preconditioner defined in eq 40 is used to accelerate the convergence.

water system within 0.002 hartree (or 6310~ hartree per

molecule) compared to the energy computed without the however, is not diagonally dominant. Nevertheless, the behavior

truncation. The reduction in computational overhead due to of the KS Hamiltonian in reciprocal space can be used to

spherical truncation is significant for a 64-water system. develop a preconditioner for the DVR basis. In the FBR of eq

Specifically, we achieved a factor of 4 saving for the nonlocal 9, the Hamiltonian matrix is diagonally dominant. Thus, we first

part of the calculation even with a relatively sparse grid spacing transform the forces on the DVR coefficients into the FBR by

(h =0.35). using the inverse of the transformation matrix, eq 11 and divide
Although Fourier filtering is straightforward to implement the forces by the diagonal elements of the kinetic energy matrix.

and does not increase the computational cost, the ad hocTherefore, each orbital force is multiplied in the FBR by

parametersy and/3, must be chosen carefully. As an alternative, o . . .

an interpolation scheme can be used to evalBatgr — Ry () KM~ = (RE + R+ K2 0,000y (40)

on the real-space grid. Recently, we introduced such a real-

space scheme based on the Euler exponential spline interpolationvhere

for the nonlocal pseudopotential calculations in PW based

CPAIMD simulations®* The method scales ag(N?) and can I G L

be adapted for the DVR based method as well. In the appendix, Kan = Ke  |k| <k, (41)

we briefly describe this approach as an alternative to overcome NeNe Tl

the aliasing effect.

I0910(E - Econverged)

andK3, is the kinetic energy matrix in FBR for the coordinate

IV. Results a. The resulting force vectors are then transformed back to the
. . DVR basis by the transformation matrix.
A. Total Energy Calculation. The total electronic energy The efficiency of the CG minimization scheme described

of the system for a given configuration is computed by above for a system of 32 water molecules in a cubic cell of
minimizing the energy functional using the conjugate gradient 18.6226 bohr is shown in Figure 2. In the figure, the conver-
(CG) techniqué?® Previously, we applied a simple CG scheme gence rate, lodf — Econverged iS plotted. The calculation was
without any preconditioniry to compute the ground state performed using a grid spacitig= 0.25 au, which is equivalent
energies of bulk silicon and single water molecule. For small to an 160 Ry energy cutoff of a density expansion in a PW
silicon systems, the convergence was reasonably fast for thecalculation (or a 40 Ry cutoff of the orbital expansion in a PW
purpose of investigating the efficiency of the DVR basis set. basis). The performance of the CG minimization shown in
However, for larger systems, such as liquid water, the rate of Figure 2 for a DVR basis set is similar to that which is usually
convergence in the energy minimization is unacceptably slow achieved with a PW basis set.
if no preconditioner is used. In the CG method, the steepest To compare the total energy convergence with basis set size
descent vector that points to the direction of energy minimum for DVR and PW basis sets, we show, in Figure 3, the total
is biased by the high-frequency components of wave functions. energy of 32 water system as a function of the number of grid
The role of the preconditioner is to offset these components sopoints for the two basis sets. For the PW basis, the abscissa
that the steepest decent direction represents the errors in thgpecifies the number of grid points used to represent the
expansion coefficients more accurately. Multigrid approa®iés  electronic density on the real-space grid. It can be clearly seen
normally used in real-space methods are based on similarfrom the figure that the total energy is converged withir 2
arguments. In multigrid methods, multiple levels of grid density 1073 hartree (1.3 kcal/mol) to the fully converged value
are used iteratively and the frequency components of the error(—313.876 hartree) with 2grid points fr = 0.25 au as above)
that are best represented by the grid density of each level arewhen a DVR basis set is used. For PW basis, at least 300Ry
removed. energy cutoff N = 200) is needed to obtain a comparable
In a plane wave basis, the KohSham Hamiltonian is accuracy. At this cutoff, the number of (complex) orbital PW
diagonally dominant for the higg-vector components of the  expansion coefficients on a spherically truncated grid is 281808,
basis set, and therefore, a simple diagonal preconditioning matrixthe number of (complex) density PW coefficients is 2250783,
is quite efficient. The KohaSham Hamiltonian in DVR basis, = whereas the number of real-space grid points is 8 million
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Figure 3. Total electronic energy of a 32 water system in a cubic g re 4. Atomic force measure, eq 42, in kcal/(mb) corresponding
periodic box obtained by preconditioned conjugate gradient minimiza- °each point in Figure 3 for (a) DVR basis and (b) plane wave basis.
tions of the energy functional using (a) DVR basis and (b) plane wave

basis. The energy is plotted versus the number of DVR grid points per . G -
coordinate and number of density FFT grids per coordinate in the case t€Chnique, itis important to assess the stability and accuracy of
o) — 300 Ry DVR based CPAIMD simulations of liquid water.

of PW calculations. The orbital energy cutoﬂgm > h
corresponds to 26(oint density grid per coordinate a'ﬁé‘fﬁb) =90 In the present work, an AIMD simulation based on the-€ar

Ry corresponds to 12@oint density grid in (b). The inset in (a) shows ~ Parrinello type adiabatic equations of motion is carried out for
the energy convergence on a finescale. 32 water molecules in a cubic periodic bdx € 18.6226 au)
at the Gamma-point of the Brioullin zone. The electronic
compared to 421875 DVR grid points. Note that AIMD structure is represented within the KehBham (KS) formalism
simulations of liquid water are usually performed with a PW  of density functional theory using the BLYF32 exchange-
basis set truncated &y = 80 Ry, where the total energy is  correlation functional. The ability of this functional to describe
~0.43 hartree (270 kcal/mol) away from the converged value. accurately the structure of liquid water has been the subject of
In CPAIMD simulations, the convergence of the atomic forces a recent controversy in the literatii®e 37341 The Kohn-Sham
is more important than the energy convergence. In Figure 4 we orbitals are expanded in a DVR basis set corresponding%o 75
show the convergence of the atomic force measure: grid points fi = 0.25 au). As shown in the previous section,
this grid setup leads to an energy convergence within0—3
hartree. Core electrons are not treated explicitly but rather, the
(42) atomic pseudopotential of Troullier and Martin (TM) typare
employed in conjunction with the Fourier filtering scheme
described in section II.
The figure shows that improved convergence of the forces is  The initial configuration was taken from a separate CP run
also achieved within the DVR scheme. The efficiency of the of 32 waters equilibrated for 5.2 ps at 300 K with a PW basis
DVR basis allows a CPAIMD simulation of liquid water in the  set cut off at 70 Ry using a Nos#loover chain thermostzt
complete basis set limit to be performed and the structure of on each degree of freedom. Following this, a run of 3.5 ps was
the liquid within a given approximation to the exchange and performed with the same thermostating scheme using a slightly
correlation functional to be accurately determined coarser grid of sizéd = 0.28 au. Following this a run of 18 ps
B. AIMD Simulation of Liquid Water. To provide an was performed using thdr = 0.25 au grid. Again, the
additional test of the accuracy and stability of the DVR based temperature of the system was maintained at 300 K throughout
approach, we performed a CPAIMD simulation of liquid water. the 18 ps DVR/CPAIMD simulation using a Noskloover
Liguid water is one of the most studied liquid phase systems chain thermostét on each degree of freedom. The structural
using AIMD simulation techniques and has become a benchmarkinformation of the system was obtained from the last 10 ps
system to test and improve new algorithms. In particular, CPAIMD trajectory. The average temperature during the 10 ps
structural and dynamical information obtained from PW based production run is 298 K. As CP parameters, a time step of 0.05
CPAIMD simulations has provided valuable insight into the fs along with a fictitious mass parameter= 500 au was
nature of hydrogen bonding and the unusually fast proton employed. As shown below, this combination of fictitious mass
transport mechanisms in waf€8” As noted in the Introduction,  and time step preserves the adiabatic separation between the
a simulation of liquid water using real-space methodology has ionic and electronic motions throughout the simulation. To
not yet been reported other than a short (0.14 ps) test®run. reduce nuclear quantum effects, all protons were assigned the
Therefore, to develop an efficient linear scaling CPAIMD mass of deuterium. This mass assignment does not affect any
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Figure 5. Instantaneous values of the (a) ionic temperature and (b) . T T S—
fictitious electronic temperature over an 18 ps DVR/CPAIMD simula- rA]

tion of 32 water system in a cubic periodic bdx<€ 18.6226 au). 75
DVR functions were used for each coordinate. For the simulation
parameters, a fictitious mags= 500 au and a time step of 0.05 fs are
used along with a NdseHoover chain thermostat coupled to each
degree of freedom to maintain the ionic temperature at 300 K.

Figure 6. Radial distribution functions (RDF) obtained from an 18 ps
DVR/CPAIMD simulation of 32 water molecules under the condition
described in Figure 5 (Solid lines). Only the last 10 ps data are used to
generate the RDFs. For comparison, experimental RDFs from the
neutron scattering data of Soper and co-worRéf{dashed lines) and,
structural properties, such as radial distribution function. The for OO, from the X-ray scattering data of Head-Gordon and co-

L . : worker$162 (dot—dashed line) are also plotted. Each panel represents
SZE:E;Z[;?Z” is performed with the DVR version of the PINY_MD RDF of (a) oxygeroxygen (b) oxyger hydrogen and (c) hydrogen

) o _ hydrogen, respectively. A bin size 0.03 A is used for all three RDFs
In Figure 5, the temperatures of the ionic and electronic from the DVR/CPAIMD simulation.

degrees of freedom throughout the 18 ps constant temperaturef_ . 3435 . L A
(NVT) simulation based on the DVR/CPAIMD scheme are iquid water: .The R.DFS calculated using a bin size .0'02
plotted versus the simulation time. The adiabatic separation of were found indistinguishable from thos'e reported in Figure 6.
these two temperatures is the fundamental requirement for aOn the same p_Iot, we show the experimental RDFs from the
successful CPAIMD simulation. In particular, the stability of heutron scattering data of Soper an_d co-workefsand, for

the temperature of fictitious electronic degrees of freedom is 00, we also shloev;/ the X-ray scattering data of Head-Gordon
critical. As shown in the figure, excellent temperature control and co-workers: . Overall, the agreement between the com-
is maintained throughout the simulation, which indicates puted and experimental RDFs is quite good. The notable

negligible exchange of energy between the ionic and electronicdiffe".ance is a slight overstructu_ring of the se_cond solvqtion
degrees of freedom. As pointed out by Kuo, ef&icroca- shell ingoo(r) compared to experiment. The height of the first

max

nonical ensemble (NVE) simulations following a few picosec- P€aKin OXygen oxygen RDFgoo. is 2.95 and the location of
onds of equilibration of liquid water system do not guarantee Maximum,rgg’ is 2.77 A. These are in good agreement with

the equipartitioning of internal energy. A significant drift 10 the results of recent CPAIMD studies of wéfe’with the same
K39) in the ionic temperature was observed in NVE simulations types of exchange-correlation functional and pseudopotential,
regardless of the methods of simulation, both CPAIMD and but with a PW expansion of the orbitals, which reportgld‘
BOAIMD simulations. In this sense, a constant temperature = 3.0 andrgg = 2.75 A at 314 RS andgge  ~ 3.1 andriy =
simulation with an efficient thermostating scheme is essential 2.73 A at 300 K!° The coordination number was also computed
to determine accurately the structure of liquid water. As shown by integratinggoo(r) up to the first minimum. The coordination

in Figure 5a, a NoseHoover chain thermost&tcoupled to each number obtained from Figure 6a is 4.2, which is close to the
degree of freedom maintains the temperature without a drift value for tetrahedral geometry. The oxygerydrogen RDF

and improves canonical sampling. The importance of thé Nose shown in Figure 6b has the first and second peaks located at
Hoover chain thermostat as a means of controlling the temper-1.81 and 3.28 A with the peak height 1.49 and 1.64 A,
ature offictitious degrees of freedom and performing longer respectively. These numbers also agree quite well with the
simulations is also discussed in ref 36. However, as shown in results reported by Kuo et .

Figure 5, the choice of time step and fictitious mass permit a  The structural parameters obtained recently by Grossman et

long, stable simulation to be performed. al34from CPAIMD simulations under microcanonical ensemble
Figure 6 shows the oxygeroxygen @oo(r)), oxygen- (NVE) condition with a Hamann type pseudopoterfiappear
hydrogen @on(r)) and hydrogerhydrogen @uu(r)) radial to be overstructured compared to the present work and that of

distribution functions (RDFs) obtained from a DVR/CPAIMD refs 36 and 40. These authors reportdd* = 3.60 at 298 K
simulation. Each RDF was calculated using a bin size of 0.03 for 32 water molecules with both BLYP and PBEXC
A. The same bin size was used in recent CPAIMD studies of functionals. The differences igon(r) andgun(r) between our
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calculations and those by Grossman et*alre much smaller, ~ We successfully performed a long term simulation of liquid
but noticeable. For instance, the height of the first intermolecular water using the DVR approach and ensured the accuracy and
peak ofgon(r) is 1.8 in ref 34, which is higher than the second stability of the DVR/CPAIMD scheme. With a relatively small
peak. However, the opposite trend is found in the present study.number of grid points, we were able to run a simulation very
The radial distribution functions recently reported by Vande- close to the complete basis set limit with the DVR basis. The
Vondele, et al®® which employ Gaussian basis sets, different validity of the method was tested by comparing the structural
pseudopotentials, and NVE sampling, are also somewhat moreinformation derived from a DVR/CPAIMD run to the existing
structured than those obtained here. The PBE functional, ondata obtained from PW/CPAIMD calculations. To the best of
the other hand, seems to consistently generate overstructuredur knowledge, this is the first successful simulation of liquid
liguid water, as reported by several grodp3>3°Schwegler et water using a real-space approach that generated accurate
al 3 recently performed extensive simulations with 54 and 64 structural information.
water molecules under NVE condition and found that the PBE  The success of the present liquid water simulations provides
functional generates significantly overstructured liquid water. us a unique opportunity to further investigate the structural and
For 54 water molecules, CPAIMD simulations yieldghf = dynamical properties of the liquid water and aqueous solutions.
3.65 at 296 K angyp> = 3.21 at 345 K. Similar behavior was ~ AS mentioned in section 1V, the properties of liquid water
also found in the BOAIMD study by Asthagiri et &.who obtained from numerous groups using AIMD techniques do not
reportedg® = 3.7 at 337 K for the PBE functional. As in ref ~ always agree with each oth&r,3"39"4! especially at ambient
34, the simulations of Asthagiri et #.also employed NVE ~ conditions. However, as pointed out in refs 36 and 38, a likely
ensemble conditions. source of the difference is the nonergodic behavior at lower
More recently, Fernandez-Serra and Artaéiéand Sit and temperature, in particular under NVE conditions. Therefore, the
Marzarf® observed a sudden structural change after about 10USe of & thermostating scheme is clearly important for ensuring
ps of AIMD with the BLYP and PBE functionals, respectively. Proper generation of static equilibrium properties. However,
As a result, a large difference goo(r) before and after 10 ps ~ there are many other factors to be taken into account to
was found. However, such behavior was not observed in the investigate the effect of equilibration. For instance, AIMD
present work, likely because our initial configuration is already Studies have used a variety of basis sets with varying degrees
well equilibrated and effective sampling is ensured via the Of total energy convergence, but the effect of energy conver-
aforementioned thermostating protocol. To make sure that theredence on the properties of liquid water for a given functional is

is no systematic variation of the structural data during the Not clear. An advantage of using the DVR/CPAIMD scheme
simulation, we computed* using blocks of 2 ps data. As over the PW/CPAIMD method is the ability to reach the

. lete basis-set limit.

pointed out by Grossman et &t.,go5 has a rather short comp : L

correlation time and 2 ps of data can provide an independent Another important '“_“p".ca“"“ Of. the success of the DVR/

measure of™ We foundgl® = 3.05, 3.19, 2.86, 2.83, 3.00 CPAIMD scheme for liquid water is that the method can be
00 - o0 T V- y I ) & y & 3 I . . . . .

during the production run (last 10 ps). Although five blocks of used to develop a linear SC‘?‘"”Q AIMD S|mulat|on tgchmque.

2 ps data are not enough to draw a definite conclusigfi, Eece(;ltly, Fﬁtebgg;ﬁDGyglt%rggoiﬁg a hﬂe?r: sca(ljl_r:jg sc?eme

; ; ' ased on the me ) oug ey did no
XiLuveesrgf;%m our DVR/CPAIMD simulation seem to be well explicitly show the scaling of their method, they were able to

. . . . . run dynamics with a localization constraint for a short period
Overall, a long-term stability was achieved in the simulation y P

of liquid water using the DVR/CPAIMD approach. This was of time (1 ps for deuterium and 0.14 ps for 64 water). Because

h in th lent adiabai tion bet the ioni the merits of BOAIMD vs CPAIMD remain uncled?’ it is
shown In the excetlent adiabalic separation between the 10NIC o 1o devise a linear scaling method based on the CPAIMD
and electronic degrees of freedom. The energy conservation

. . : . scheme. We are currently developing such a method based on
during the simulation, as measured by the quantity “on-the-fly” localization of the occupied orbitals. In particular,
we are undertaking theoretical groundwork using nonorthogonal
orbitals{6.6566 which provide greater degree of localization
compared to the orthogonal ones.

Nstep!
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the order 10°. These observations ensure the validity of force '

evaluation degcribed in section III.. As poi.nted qut earlier, even Appendix A: Euler Exponential Spline Interpolation for

a small error in the_force calculations rmght ruin the st_abl_hty the Nonlocal Pseudopotential Calculation

of CPAIMD simulations. The structural information of liquid

water obtained in this work from DVR/CPAIMD simulation is [N this appendix, we briefly describe an alternative expression
also in good agreement with the recent CPAIMD study by Kuo for the nonlocal energy based on the Euler exponential spline
et al3® and of Mantz et at® with the same types of functional interpolation®” More details of the _algorithm can_be found
and pseudopotential, but with a plane wave expansion of the €lsewheré? We first express the functidfum(r — Ri() in terms
orbitals. A more detailed analysis of the DVR water study will Of & Fourier series as

be reserved for a future publication. 1 R
_ — - 10-(r =Ry
Fim(r—Ryg) V%Fjlm(g)e (A1)

AE= (43)

V. Conclusion and Future Work

In this paper, the algorithmic details for CaParrinello ab where Fym(g) is not an FFT ofFym(r) but an exact Fourier
initio MD simulations using DVR basis sets were presented. transform given as
Unlike typical plane wave based CPAIMD methods, only two = . @ o
FFTs are needed to compute the energy and coefficient forces. Fam(9) = 4”Y|m(99'¢9) ﬁ) r51@n) vy(r) éy(r) dr (A2)
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